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We introduce a generalization of the parallel, or Crow-Kimura, and Eigen models of molecular evolution to
represent the exchange of genetic information between individuals in a population. We study the effect of
different schemes of genetic recombination on the steady-state mean fitness and distribution of individuals in
the population, through an analytic field theoretic mapping. We investigate both horizontal gene transfer from
a population and recombination between pairs of individuals. Somewhat surprisingly, these nonlinear gener-
alizations of quasispecies theory to modern biology are analytically solvable. For two-parent recombination,
we find two selected phases, one of which is spectrally rigid. We present exact analytical formulas for the
equilibrium mean fitness of the population, in terms of a maximum principle, which are generally applicable to
any permutation invariant replication rate function. For smooth fitness landscapes, we show that when positive
epistatic interactions are present, recombination or horizontal gene transfer introduces a mild load against
selection. Conversely, if the fitness landscape exhibits negative epistasis, horizontal gene transfer or recombi-
nation introduces an advantage by enhancing selection towards the fittest genotypes. These results prove that
the mutational deterministic hypothesis holds for quasispecies models. For the discontinuous single sharp peak
fitness landscape, we show that horizontal gene transfer has no effect on the fitness, while recombination
decreases the fitness, for both the parallel and the Eigen models. We present numerical and analytical results as
well as phase diagrams for the different cases.
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I. INTRODUCTION

It has been argued that genetic recombination provides a
mechanism to speed up evolution, at least in finite popula-
tions �1�. Moreover, it has been suggested that recombination
may provide a way to escape from the phenomenon of
“Muller’s ratchet” �2�, or suboptimal fitness characteristic of
finite populations with asexual reproduction. In bacteria, it
has been proposed �3� that horizontal gene transfer allows for
the gradual emergence of modularity, through the formation
of gene clusters and their eventual organization into operons.
In in-vitro systems, protein engineering protocols by directed
evolution incorporate genetic recombination in the form of
DNA shuffling �4,5� to speed up the search for desired fea-
tures such as high binding constants among combinatorial
libraries of mutants.

In addition to these inherently dynamical effects, it re-
mains a matter of debate if the exchange of genetic-encoding
elements provides a long-term advantage to an infinite popu-
lation in a nearly static environment. Indeed, it is argued that
�6� when advantageous genetic associations have been gen-
erated as a result of selection in a given environment, further
random recombination is likely to disrupt these associations,
thus decreasing the overall fitness. This argument is less co-
gent if we consider that recombination and horizontal gene
transfer preserve the modular structure of the genetic mate-
rial �3�. That is, entire operational and functional units are
recombined, rather than random pieces. It has also been pro-
posed that for recombination to introduce an advantage in
infinite populations, negative linkage disequilibrium is re-
quired �7–10�. This situation means that particular allele
combinations are present in the population at a lower fre-
quency than predicted by chance. Negative linkage disequi-

librium can result as a consequence of negative epistasis:
alleles with negative contributions to the fitness interact syn-
ergistically, increasing their deleterious effect when com-
bined, and alleles with positive contributions to the fitness
interact antagonistically �7,11,12�, see Fig. 1. Under negative
epistasis, the mutational deterministic hypothesis
�7,9–11,13–15� postulates that recombination promotes a
more efficient removal of deleterious mutations, by bringing
them together into single genomes, and hence facilitating
selection �13,16� to discard those genotypes with low fitness.
It has been argued that the negative linkage disequilibrium
generated by negative epistatic interactions is a factor to pro-
mote the evolution of recombination in nature �7,15,17�, and
conversely that recombination may act as a mechanism to
evolve epistasis �18–20�. This latter statement is controver-
sial, since it is intuitive that recombination should contribute
to weaken correlations between different genes �21�. Despite
these theoretical arguments, experimental studies seem to in-
dicate that negative epistasis is not so common in nature
�22,23� as recombination and, moreover, both negative and
positive epistasis may coexist as different fitness components
�7� within the same genome in natural organisms.

To address some of these questions, we study the effect of
transferring genetic information between different organisms
in an infinite population. We choose the conceptual frame-
work of “quasispecies” theory, represented by two classical
models of molecular evolution: the Eigen model �24–27� and
the parallel, or Crow-Kimura, model �28,29�. These classical
models include the basic processes of mutation, selection,
and replication that occur in biological evolution. Our goal is
to solve these two standard models of quasispecies theory,
Crow-Kimura and Eigen model, when horizontal gene trans-
fer or recombination are included. Since horizontal gene
transfer and recombination are essential features of evolu-
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tionary biology, our solutions bring quasispecies theory
closer to modern biology. An operational definition of fitness
is provided in these models by the replication rate, which is
considered to be a function of the genotype. In their simplest
formulation, quasi-species models consider a static environ-
ment, with a deterministic mapping between individual ge-
netic sequences and replication rate. Both the Eigen model
�24,25� and the parallel, or Crow-Kimura model �28�, are
formulated in terms of a large system of differential equa-
tions, describing the time evolution of the relative frequen-
cies of the different sequence types in an infinite population,
a mathematical language that is common in the field of
chemical kinetics �24,25�. Sequences, representing informa-
tion carrying molecules such as RNA or DNA, are assumed
to be drawn from a binary alphabet �e.g., purines and pyri-
midines�. The most remarkable property of these classical
models is that when the mutation rate is below a critical
value they exhibit a phase transition in the infinite genome
limit �24–27,30–34�, with the emergence of a self-organized
phase: the quasispecies �24–26�. This organized phase, char-
acterized by a collection of nearly neutral mutants rather than
by a single homogeneous sequence type, is mainly a conse-
quence of the autocatalytic character of the evolution dynam-
ics, which tends to enrich exponentially the proportion of
fittest individuals in the population �24–27�. The quasispe-
cies concept, with its corresponding “error threshold” transi-
tion, has been applied in the interpretation of experimental
studies in RNA viruses �35–38�. In particular, the error-
threshold transition has been proposed as a theoretical moti-
vation for an antiviral strategy �39�, termed “lethal mutagen-
esis,” which drives an infecting population of viruses

towards extinction by enhancing their mutation rate �40–42�.
It has been argued, however, that the mechanism for lethal
mutagenesis possesses a strong ecological component �43�,
and that perhaps the mean population fitness is simply driven
negative, and so the total number of viral particles in an
infecting population decreases in time towards extinction, in
contrast with error-threshold theories that describe a random-
ization of the composition of the quasispecies in genotype
space.

The existence of the error threshold transition has moti-
vated the attention of theoretical physicists, especially since
it was proved that the quasispecies theory can be exactly
mapped into an 2D Ising spin system �30,31�, with a phase
transition that is first order for a sharp peak fitness, and sec-
ond or higher order for smooth fitness functions. More re-
cently, exact mappings into a quantum spin chain �44–48� or
field theoretic representations �33� have been developed.
Analytical and numerical studies of these systems, in the
large genome limit, are possible when the fitness function is
considered to be permutation invariant �32,33,44,45,49�, or
depending on the overlap with several peaks in sequence
space �34�. The mapping of the quasispecies models into a
physical system allows for the application of the powerful
mathematical techniques of statistical mechanics, thus ob-
taining exact analytical solutions which provide significant
insight over numerical studies �33,34,46�. Most of the exist-
ing analytical solutions correspond to the case when recom-
bination is absent. Recombination and horizontal gene trans-
fer have been studied by computer simulations of artificial
gene networks �11� and digital organisms �8�, but relatively
few analytical approaches have been reported in the context
of quasispecies theory �1,49–51�. A numerical study of a
mathematical model for viral super-infection termed uniform
crossover, and intermediate between horizontal gene transfer
and recombination, has been reported �50�, with numerical
solutions based on relatively short viral sequences �N=15�.
More recently, the effect of incorporating horizontal gene
transfer in quasispecies theory has been studied in terms of
the dynamics �1�, reporting numerical studies and approxi-
mate analytical expressions. Exact analytical expressions for
the equilibrium properties of the population in the presence
of horizontal gene transfer have been derived using the meth-
ods of quantum field theory �49�.

In this article, we study the effect of introducing different
schemes of genetic recombination in quasispecies theory. Ex-
tending the results in Ref. �49�, we present an exact field
theoretical mapping of the parallel and Eigen models. We
remark that field theoretical methods provide a unique and
powerful set of tools for the analytical study of dynamical
systems, such as reaction-diffusion �52,53� or birth-death
processes �54�. In this paper, we employ these theoretical
tools to obtain exact analytical expressions for the equilib-
rium mean fitness and average composition of the popula-
tion, for permutation invariant but otherwise arbitrary repli-
cation rate functions.

In Sec. II we consider the parallel model. We consider
horizontal gene transfer of nonoverlapping blocks, as well as
of blocks of random size. We also consider a recombination
process producing a daughter sequence symmetrically from
two parents, as might occur in viral super infection or coin-
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FIG. 1. Convention for the sign of epistasis, �. In the figure are
represented two smooth fitness landscapes, as a function of u
=2l /N−1, with N the total length of the �binary� genetic sequences
and 0� l�N the number of beneficial mutations �number of “�”
spins� along the sequence. In this representation, positive �synergis-
tic� epistasis ��0 corresponds to a positive curvature f��u��0,
while negative �antagonistic� epistasis ��0 corresponds to a nega-
tive curvarture f��u��0 �7,11,12�. The examples shown are a qua-
dratic fitness landscape f�u�=ku2 /2 �dashed line�, with positive cur-
vature and ��0, and a square-root fitness landscape f�u�=k�u
�solid line�, with negative curvature and ��0. We set k=4.0 in both
examples.
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fection. In Sec. III, we study the effect of these different
genetic recombination schemes in the context of the Eigen
model. In both models, recombination leads to two selected
phases. Interestingly, beyond a critical recombination rate,
the distribution of the population becomes independent of
the recombination rate. Also interesting is that the steady-
state distribution is independent of the crossover probability.

To study the effect of epistasis, whose sign is determined
by the curvature of the fitness landscape �second derivative�
when represented as a function of the Hamming distance
with respect to the wild type, we considered two different
examples of smooth fitness functions: a quadratic function,
representing positive epistasis, and a square-root function
representing negative epistasis. We find that for the quadratic
fitness function, horizontal gene transfer and recombination
introduce a mild load against selection. The opposite effect is
observed for the square-root fitness, that is, horizontal gene
transfer and recombination introduce an advantage by en-
hancing selection towards fittest genotypes. These results
provide support for the mutational deterministic hypothesis,
which postulates that recombination should be beneficial for
negative epistasis fitness functions, and deleterious for posi-
tive epistasis fitness functions. Moreover, we prove analyti-
cally in Appendix L that the mutational deterministic hypoth-
esis applies for the parallel model in the presence of
horizontal gene transfer. A similar proof is provided in Ap-
pendix M for the Eigen model. We also show analytically
that the mutational deterministic hypothesis applies for the
case of two-parent recombination, as presented in Appendix
N for the parallel model, and in Appendix O for the Eigen
model.

The effect of recombination becomes negligible for dis-
continuous fitness landscapes, such as a single sharp peak.
For all these cases, we present exact analytical expressions
that determine the phase structure of the population at steady
state. Results are explicit for any microscopic fitness func-
tion: Eqs. �14�, �31�, �62�, and �63� for the parallel model and
Eqs. �82�, �93�, �106�, and �107� for the Eigen model. We
evaluate these expressions for three permutation invariant fit-
ness functions: sharp peak, quadratic, and square root for the
two common forms of quasispecies theory, parallel and
Eigen model: Eqs. �22�, �23�, �33�, �34�, �68�, �71�, �85�–
�87�, �96�–�98�, �112�, and �113�. We also present numerical
tests supporting our analytical equations.

II. THE PARALLEL MODEL

We consider a generalization �49� of the parallel, or
Crow-Kimura �28�, model to take into account the transfer of
genetic material between pairs of individuals in an infinite
population.

dqi

dt
= riqi + �

k=1

2N

�ikqk + �N
�k,lRkl

i qkql

�kqk
− �Nqi. �1�

Here, qi represents the �unnormalized� frequency of the se-
quence type Si= �s1

i ,s2
i , . . . ,sN

i �, with sj
i = 	1, for 1� i�2N

and 1� j�N. The normalized frequencies are obtained from

pi=qi /� j=1
2N

qj. In Eq. �1�, ri is the replication rate of sequence

Si. It is given that ri=Nf� 1
N� j=1

N sj
i�. The mutation rate from

sequence Sj into Si is �ij =�
dij,1
−N�
dij,0

. The Kronecker
delta in this expression ensures that mutations involve a
single base substitution per unit time �generation�. Genetic
recombination processes between pairs of sequences in the
population are represented by the nonlinear term �see Fig. 2�.
They are considered to occur with an overall rate �, while the
coefficient Rkl

i represents the probability that a pair of paren-
tal sequences Sk, Sl produces an offspring Si. Depending on
the particular recombination mechanism, some of these co-
efficients will be identically zero. Also, these coefficients

must satisfy the condition �i=1
2N

Rkl
i =1, ∀1�k , l�2N. For this

generic process, we will present the analytical solutions for
the steady-state mean fitness by considering different
schemes of genetic recombination.

A. Horizontal gene transfer of nonoverlapping blocks

In this recombination scheme, we consider the exchange
of blocks of genetic material between pairs of individuals.
We consider these blocks to be nonoverlapping in the paren-

tal sequences, and of a fixed size M̄. Thus, each sequence is

made of N /M̄ blocks. The recombination coefficients in the
differential Eq. �1� are given for this horizontal gene transfer
process by

Rkl
i = �

b=0

N/M̄−1

�
jb=M̄b+1

M̄�b+1� �1 + sjb
l sjb

i

2
	 �

j�
jb�

N �1 + sj
ksj

i

2
	 . �2�

Here, 0�b�N /M̄ −1 represents the block index, while

M̄b+1� jb�M̄�b+1� represents the site index within block
b.

Generalizing the method presented in Ref. �49�, we write
the nonlinear term as

�lqlRkl
i

�mqm
= �

b=0

N/M̄−1� �
jb=M̄b+1

M̄�b+1� �1 + sjb
l sjb

i

2
	
 �

j�
jb�

N �1 + sj
ksj

i

2
	 .

�3�

Here, �Al�=�lqlAl /�mqm is a population average. At steady
state, this average is independent of the value of b, due to the
symmetry of the fitness function.

ν

S trand l

S trand k

O ffsp ring , i

FIG. 2. �Color online� Pictorial representation of the horizontal
gene transfer process considered.
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The variance of the composition ul= 1
N� j=1

N sj
l is given by

1
N2 � j,j�=1

N �
sj
l
sj�

l �. In the absence of recombination or hori-
zontal gene transfer this variance is O�N−1�, which implies
correlations along the sequence are O�N−1� �33�. We expect
the same scaling of the variance in the presence of recombi-
nation or horizontal gene transfer. Therefore, we introduce
the factorization

� �
jb=M̄b+1

M̄�b+1� 1 + sjb
l sjb

i

2 
 � �
jb=M̄b+1

M̄�b+1� � 1 + sjb
l sjb

i

2

 + O�M̄/N�

= �
jb=M̄b+1

M̄�b+1� �
sjb
i ,+1

1 + u�jb�
2

+ 
sjb
i ,−1

1 − u�jb�
2

	 �4�

which becomes exact in the N→� limit. Here, u�jb�
=�lqlsjb

l /�mqm is the average base composition at site jb.
We are interested in the long time behavior of the system,

when the average base composition becomes independent of
time and position u�j��u. Thus, in the formalism of spin
Boson operators �49� â��j�= (â1�j� , â2�j�), we define the re-
combination operator describing this recombination term by

R̂ =
1

N
�
b=0

N/M̄−1� �
jb=M̄b+1

M̄�b+1�

��+â1
†�jb� + �−â2

†�jb��


�â1�jb� + â2�jb�� − Î� . �5�

Here, Î is the identity operator. The coefficients �	

= �1	u� /2 represent �49� the steady-state probability �per
site� of having a “+1” or a “−1.” Defining the matrix

D = ��+ �+

�− �−
	 , �6�

the recombination operator in Eq. �5� can be expressed as

R̂ =
1

N
�
b=0

N/M̄−1� �
jb=M̄b+1

M̄�b+1�

â�†�jb�Dâ��jb� − Î� . �7�

1. The Hamiltonian

Considering the recombination operator in Eq. �7�, we
formulate the Hamiltonian describing the system

− Ĥ = Nf� 1

N
�
j=1

N

â�†�j��3â��j�� + ��
j=1

N

�â�†�j��1â��j� − Î�

+ � �
b=0

N/M̄−1� �
jb=M̄b+1

M̄�b+1�

â�†�jb�Dâ��jb� − Î� . �8�

Here, �3= � 1 0
0 −1 � and �1= � 0 1

1 0 � are the Pauli matrices. We in-
troduce a Trotter factorization

e−Ĥt = lim
M→�

� �Dz�*Dz���z�M���
k=1

M

�z�k�e−�Ĥ�z�k−1�	�z�0� . �9�

As shown in Appendix A, the partition function that gives
the mean population fitness is

Z =� �D�̄D�D�̄D��e−S��̄,�,�̄,�� � eNfmt. �10�

Here, the action in the continuous time limit is

S��̄,�,�̄,�� = − N�
0

t

dt�− �̄� − �̄� − � −
�

M̄
+ f��� +

�

M̄
�M̄�

− N ln Q . �11�

2. The saddle point limit

In the N→� limit, the saddle point is exact and we obtain
an analytical expression for the partition function Eq. �10�.
We look for the steady-state solution, when the fields become

independent of time, �c, �̄c, �c, �̄c. The trace defined by Eq.
�A10� in the long time saddle-point limit becomes

lim
t→�

ln Qc

t
=

�̄c

2
+ ��̄c��̄c + u�̄c� + �� + �̄c/2�2�1/2. �12�

Hence, the saddle-point action is

lim
N,t→�

ln Z

Nt
= lim

t→�

− Sc

Nt
= fm

= max
�c,�̄c,�c,�̄c

� f��c� − �̄c�c − �̄c�c − � −
�

M̄
+

�

M̄
�c

M̄

+
�̄c

2
+ ��̄c��̄c + u�̄c� + �� + �̄c/2�2�1/2� . �13�

As shown in Appendix B, the mean fitness of the population
is

fm = max
−1��c�1� f��c� − � −

�

M̄
+

�

M̄
��c��c��M̄ + ��1 − �c

2




�1 − u2�1 +
�

2�
��c��c��M̄−1	

��1 +
�

2�
�1 − u2���c��c��M̄−1�2

− u2�1/2� . �14�

Here, �c is given by Eq. �B7�, and the surplus u is obtained
through the self-consistency condition fm= f�u�. Equation
�14� represents an exact analytical expression for the mean
fitness of an infinite population experiencing horizontal gene
transfer. This expression is valid for an arbitrary, permutation
invariant replication rate f�u�.

It is worth noticing that Eq. �14� is a natural generaliza-
tion of the single-site horizontal gene transfer process de-
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scribed in Ref. �49�. Indeed, specializing the Eqs. �B7� and

�14� to the particular case M̄ =1, after some algebra, we ob-
tain

fm�M̄ = 1� = max
−1��c�1

� f��c� − � −
�

2
+

�u

2
�c

+ �1 − �c
2��� +

�

2
	2

− �u�

2
	2�1/2� , �15�

which reproduces the analytical result in Ref. �49�.

3. Numerical tests and examples

For numerical calculations, it is convenient to reformulate
Eq. �1� in terms of the fraction of the population at a distance
l from the wild type, Pl=� j�Cl

pj. Here, Cl is the class of
sequences with l number of “−1” sites. The number of se-
quences within this class is � N

l �.
As an example, for the case M̄ =3, the differential equa-

tion representing the time evolution of the probability distri-
bution of classes within an infinite population of binary se-
quences is

dPl

dt
= N� f�2l/N − 1� − �

l�=0

N

Pl�f�2l�/N − 1� − ��Pl + �N�N − l + 1

N
Pl−1 +

l + 1

N
Pl+1� +

�

3
N
�−

3g3�N − l + 3�Pl−3

+ ��−
3h�N − l + 2� + 3�−

2�+g3�N − l + 2��Pl−2 + ��−
3h�l − 1� + 3�−�+

2g3�N − l + 1� + 3�−
2�+h�N − l + 1��Pl−1

+ ��+
3h�N − l − 1� + 3�−

2�+g3�l + 1� + 3�−�+
2h�l + 1��Pl+1 + ��+

3h�l + 2� + 3�−�+
2g3�l + 2��Pl+2 + �+

3g3�l + 3�Pl+3�

−
�

3
N
��−

3 + 3�−
2�+ + 3�−�+

2�g3�N − l� + ��−
3 + 3�−

2�+ + �+
3�h�N − l� + ��−

3 + 3�−�+
2 + �+

3�h�l� + ��+
3 + 3�+�−

2 + 3�−�+
2�g3�l��Pl.

�16�

In writing this equation we have made use of the only
O�N−1� correlations between sites, which holds at long time
as well as for short time with suitable initial conditions.
Here, we defined

�	 =
1 	 u

2
, �17�

where the average composition is calculated as

u = �
l=0

N
N − 2l

N
Pl �18�

and the functions

g3�l� =
l�l − 1��l − 2�

N�N − 1��N − 2�
,

h�l� = 3
l�l − 1��N − l�

N�N − 1��N − 2�
. �19�

A comparison between the analytical expression Eq. �14�
and the direct numerical solution of the differential Eq. �16�
for N=1002 is presented in Table I, where the quadratic

fitness f�u�=ku2 /2 was considered. We notice that the ana-
lytical method and the numerical solution provide the same
results within O�N−1�, as expected from the saddle point
limit.

The differential equation representing the horizontal gene

transfer of blocks of size M̄ =4 within an infinite population
of binary sequences is given by

TABLE I. Analytical vs numerical results for horizontal gene
transfer in the parallel �Kimura� model for the quadratic fitness

f�u�=ku2 /2, with M̄ =3.

k /� � /� unumeric uanalytic

2.0 0.0 0.4993 0.5000

2.0 0.5 0.4830 0.4838

2.0 1.0 0.4668 0.4677

2.0 1.5 0.4510 0.4519

2.5 0.0 0.5995 0.6000

2.5 0.5 0.5915 0.5920

2.5 1.0 0.5838 0.5844

2.5 1.5 0.5766 0.5772

5.0 0.0 0.7998 0.8000

5.0 0.5 0.7988 0.7990

5.0 1.0 0.7979 0.7981

5.0 1.5 0.7970 0.7972
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d

dt
Pl = N� f�2l/N − 1� − �

l�=0

N

Pl�f�2l�/N − 1� − ��Pl + �N�N − l + 1

N
Pl−1 +

l + 1

N
Pl+1� +

�

4
N
g4�N − l + 4��−

4Pl−4

+ ��−
4h3�N − l + 3� + 4�−

3�+g4�N − l + 3��Pl−3 + ��−
4h2�l − 2� + 4�−

3�+h3�N − l + 2� + 6�−
2�+

2g4�N − l + 2��Pl−2 + ��−
4h3�l − 1�

+ 4�−
3�+h2�l − 1� + 6�−

2�+
2h3�N − l + 1� + 4�−�+

3g4�N − l + 1��Pl−1 + ��+
4h3�N − l − 1� + 4�−�+

3h2�l + 1� + 6�−
2�+

2h3�l + 1�

+ 4�−
3�+g4�l + 1��Pl+1 + ��+

4h2�l + 2� + 4�−�+
3h3�l + 2� + 6�−

2�+
2g4�l + 2��Pl+2 + ��+

4h3�l + 3�

+ 4�−�+
3g4�l + 3��Pl+3 + �+

4g4�l + 4�Pl+4� −
�

4
N
��−

4 + 6�−
2�+

2 + 4�−
3�+ + �+

4�h3�N − l�

+ ��−
4 + 6�−

2�+
2 + 4�−�+

3 + �+
4�h3�l�

+ �4�−
3�+ + 6�−

2�+
2 + 4�−�+

3 + �−
4�g4�N − l�

+ �4�−
3�+ + 6�−

2�+
2 + 4�−�+

3 + �+
4�g4�l� + ��−

4 + 4�−
3�+ + 4�−�+

3 + �+
4�h2�l��Pl. �20�

Here, the parameters �	 and u are defined, as before, by Eqs.
�17� and �18�, respectively. We also define the functions

g4�l� =
l�l − 1��l − 2��l − 3�

N�N − 1��N − 2��N − 3�
,

h3�l� = 4
l�l − 1��l − 2��N − l�

N�N − 1��N − 2��N − 3�
,

h2�l� = 6
l�l − 1��N − l��N − l − 1�
N�N − 1��N − 2��N − 3�

. �21�

A comparison between the analytical expression �14� and
the direct numerical solution of the differential Eq. �20� for
N=1002 is presented in Table II, for the quadratic fitness
f�u�=ku2 /2. As in the former case, the numerical and ana-
lytical results agree to within O�N−1�, as expected.

For the quadratic fitness case in the absence of recombi-
nation ��=0�, the exact analytical result predicts the exis-
tence of a “selected” organized phase, or quasispecies, when
k��. In this phase, the average composition is given by u
=1−� /k. For k��, a phase transition occurs and the qua-
sispecies disappears in favor of a disordered or “unselected”
phase with u=0. In Fig. 3, we display the phase structure in
the presence of horizontal gene transfer. In agreement with
the numerical results presented in Tables I and II, the recom-
bination scheme considered in this model introduces a mild
mutational load. However, near the critical region k /��1,
one observes that horizontal gene transfer distorts the phase
boundary which defines the error threshold, from the hori-
zontal line k /�=1, to a monotonically increasing curve that
saturates for large values of � /�. We obtain an analytical
expression for the phase boundary, by expanding Eqs. �B7�
and �14� near the critical region �c�0, u�0. We find that
the boundary is defined by

kcrit = �
1 + �/�

1 + �/�2��
. �22�

We notice from this expression that for small �, kcrit��
+� /2, whereas for large � the phase boundary becomes as-
ymptotically independent of �, kcrit�2�. We also notice
from this formula that the phase boundary is independent of

the block size M̄.
As a second example, we consider a square-root fitness

function

f�u� = k��u� . �23�

In Table III, we present a comparison of our analytical result,
obtained from Eq. �14�, with the direct numerical solution of

the differential Eq. �16�, for M̄ =3. As in the quadratic fitness
example, the analytical and numerical results agree to order
O�N−1�, as expected. From the results presented in Table III,

TABLE II. Analytical vs numerical results for horizontal gene
transfer in the parallel model for the quadratic fitness f�u�=ku2 /2,

with M̄ =4.

k /� � /� unumeric uanalytic

2.0 0.0 0.4993 0.5000

2.0 0.5 0.4832 0.4840

2.0 1.0 0.4672 0.4680

2.0 1.5 0.4510 0.4519

2.5 0.0 0.5995 0.6000

2.5 0.5 0.5916 0.5921

2.5 1.0 0.5839 0.5845

2.5 1.5 0.5766 0.5773

5.0 0.0 0.7998 0.8000

5.0 0.5 0.7988 0.7990

5.0 1.0 0.7979 0.7981

5.0 1.5 0.7970 0.7973
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it is remarkable that the average composition u, and corre-
spondingly the mean fitness of the population fm=k��u�, in-
crease when increasing the horizontal gene transfer rate �.

The mutational deterministic hypothesis states that recom-
bination is beneficial for negative epistasis fitness functions
�see Fig. 1� f��u��0, and deleterious for positive epistasis
fitness functions, f��u��0 �7,9–11,13,14�. Our results for the
quadratic and square-root fitness functions, �14�–�22� and
Tables I–III provide support for this hypothesis. In fact, we
can prove the mutational deterministic hypothesis holds for
the parallel model in the presence of horizontal gene transfer,
Appendix L.

Horizontal gene transfer has less of an effect for the sharp

peak fitness, f�u�=A
u,1. For general M̄, the maximum in Eq.
�14� is achieved for �c=1, with �c�1�= �1+u� /2 from Eq.
�B7�. Thus, one obtains

fm = A − � −
�

M̄
�1 − �1 + u

2
	M̄� . �24�

The error threshold is given for u=0 by the condition A

��+ �

M̄
�1−2−M̄�. However, we notice from Eq. �24� that

fm�u=1�=A−�� fm�u=0�. Therefore, we have u=1
−O�N−1� in the selected phase, with the effect of horizontal

gene transfer being negligible for finite M̄. We obtain the
fraction of the population located at the peak P0, from the
self-consistency condition P0A= fm, which yields P0=1
−� /A. Thus, the true error threshold is at Acrit=�, with the

condition A��+ �

M̄
�1−2−M̄� defining the limit of metastabil-

ity for initial conditions with u�0. These results are similar
to the ones obtained in the absence of horizontal gene trans-
fer �33,49,55�. Thus, we conclude that for the sharp peak
fitness, horizontal gene transfer does not spread out the
population in sequence space. This result differs from the
numerical studies presented in Ref. �50�, where a mathemati-
cal model for “uniform crossover” recombination between

viral strains superinfecting a population of cells was de-
scribed. We remark that this model studied sequences of fi-
nite length �N=15�, where the error threshold transition is
not really sharp. Our results correspond to the more realistic
limit N→� �typical viral genomes are 103−104�.

In summary, from our exact analytical formula for the
mean fitness Eq. �14�, which is valid for any permutation
invariant replication rate, we developed the explicit solution
of three different examples: A quadratic fitness, a square-root
fitness and a single sharp peak. For the case of smooth fitness
functions, from our exact analytical formulas for the mean
fitness fm and average composition u, we conclude that in
agreement with the mutational deterministic hypothesis
�7,9,10,13,14�, a population whose fitness represents positive
epistasis �i.e., quadratic�, will experience an additional load
against selection due to horizontal gene transfer. On the con-
trary, when negative epistasis is present �e.g., square-root�,
horizontal gene transfer is beneficial by enhancing selection.
We provided a mathematical proof for this effect, Appendix
L. When the fitness is defined by a single sharp peak, the
population steady-state distribution behaves more rigidly in
response to horizontal gene transfer. This fundamental differ-
ence can be attributed to the structure of the quasispecies
distribution, which in the smooth fitness case is a Gaussian
centered at the mean fitness, while in the sharp peak it is a
fast decaying exponential, sharply peaked at the master se-
quence �33�. While the Gaussian distribution spreads its tails
over a wide region of sequence space, thus allowing for hori-
zontal gene transfer effects to propagate over a large diver-
sity of mutants, the sharp exponential distribution concen-
trates in a narrow neighborhood of the master sequence,
acting as a barrier to the propagation of such effects.

B. Horizontal gene transfer for multiple-size blocks

A natural extension to the model of horizontal gene trans-
fer involving blocks of genes of a given size is to consider a

TABLE III. Analytical vs numerical results for horizontal gene
transfer in the parallel �Kimura� model for the square-root fitness

f�u�=k��u�, with M̄ =3, N=801.

k /� � /� unumeric uanalytic

2.0 0.0 0.4858 0.4855

2.0 0.5 0.4892 0.4889

2.0 1.0 0.4918 0.4915

2.0 1.5 0.4939 0.4936

2.5 0.0 0.5399 0.5396

2.5 0.5 0.5428 0.5425

2.5 1.0 0.5450 0.5448

2.5 1.5 0.5469 0.5466

4.0 0.0 0.6525 0.6523

4.0 0.5 0.6542 0.6540

4.0 1.0 0.6556 0.6554

4.0 1.5 0.6568 0.6565

0 0.4 0.8 1.2 1.6 2
ν/µ

0.6

0.8

1

1.2

1.4

1.6

1.8

2
k/

µ

Selected phase

Unselected phase

FIG. 3. Phase diagram of the parallel �Kimura� model for the
quadratic fitness f�u�=ku2 /2, with horizontal gene transfer of non-

overlapping blocks of size M̄. The phase boundary of the error
threshold phase transition is given by the curve, and its shape is

independent of the block size M̄. In the absence of horizontal gene
transfer, the phase transition occurs at k /�=1.
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process where each site along the sequence may be trans-
ferred with probability �, or left intact with probability 1
−�. The operator describing this process is

R̂ =
1

�M̄�
�
j=1

N

��1 − ��Î j + �R̂j� −
1

�M̄�
Î . �25�

Here, R̂j = â�†�j�Dâ��j� is the single-site recombination opera-
tor defined in Eq. �5�, with the matrix D defined as in Eq. �6�.
Notice that this operator represents a binomial process,

where an average number of sites �M̄�=�N is transferred. If
we consider, as in the former finite block size case, that

N / �M̄�=O�N�, then we have �= �M̄� /N, and for very large N
Eq. �25� reduces to

R̂ =
1

�M̄�
�
j=1

N

��1 − ��Î j + �R̂j� −
1

�M̄�
Î

�
1

�M̄�
e−�M̄�+��M̄�/N��j=1

N â�†�j�Dâ��j� −
1

�M̄�
Î . �26�

Considering the recombination operator defined in Eq.
�26�, the spin Boson Hamiltonian for the Kimura model be-
comes

− Ĥ = Nf� 1

N
�
j=1

N

â�†�j��3â��j�� + ��
j=1

N

�â��j�†�1â��j� − Î�

+
�

�M̄�
Ne−�M̄�+��M̄�/N��j=1

N â�†�j�Dâ��j� −
�

�M̄�
NÎ . �27�

We introduce a Trotter factorization

e−Ĥt = lim
M→�

� �Dz�*Dz���z�M���
k=1

M

�z�k�e−�Ĥ�z�k−1�	�z�0� .

�28�

As shown in Appendix C, the partition function becomes

Z =� �D�̄D�D�̄D��e−S��̄,�,�̄,�� � eNfmt. �29�

Here, the action in the continuous time limit is

S��̄,�,�̄,�� = − N�
0

t

dt��− �̄� − �̄� − � −
�

�M̄�
+ f���

+
�

�M̄�
e−�M̄��1−��� − N ln Q . �30�

1. The saddle point limit

As in the previous model, the saddle point limit is exact as
N→� in Eq. �30�. After a similar procedure as in Sec. II A 2,
we find the saddle-point equation for the mean fitness

fm = max
−1��c�1� f��c� − � −

�

�M̄�
+

�

�M̄�
e−�M̄��1−�c��c��

+ ��1 − �c
2

�1 − u2�1 +
�

2�
e−�M̄��1−�c��c��	

��1 +
�

2�
�1 − u2�e−�M̄��1−�c��c���2

− u2�1/2� .

�31�

Here, �c��c� is obtained from the equation

�c��c� =
1 + u�c

2
+

�1 − �c
2

2



�1 − u2

�1 − � u

1 +
�

2�
�1 − u2�e−�M̄��1−�c��

2

�
1/2

. �32�

Equation �31� represents an exact analytical expression for
the mean fitness fm of an infinite population experiencing
horizontal gene transfer of multiple size sequences. The for-
mula is valid for an arbitrary, permutation invariant replica-
tion rate function f�u�.

We notice that recombination introduces an additional
mutational load against selection. This load is mild at low
values of the fitness constant k, and becomes negligibly
small at larger values. Numerical evaluation of Eqs. �31� and
�32� is presented in Table IV for the quadratic fitness f�u�
=ku2 /2, and average block size �M̄�=3.

An analytical expression for the phase boundary is ob-
tained from Eqs. �31� and �32�, near the error threshold u
�0, �c�0. We find

TABLE IV. Analytical results for horizontal gene transfer in the

parallel model for the quadratic fitness f�u�=
k

2
u2, with �M̄�=3.

k � uanalytic

2.0 0.0 0.50

2.0 0.5 0.4840

2.0 1.0 0.4680

2.0 1.5 0.4522

2.5 0.0 0.6000

2.5 0.5 0.5921

2.5 1.0 0.5845

2.5 1.5 0.5773

4.0 0.0 0.8000

4.0 0.5 0.7990

4.0 1.0 0.7981

4.0 1.5 0.7973
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kcrit = �

1 +
�

�

1 +
�

2�

. �33�

We notice that for small �, the critical value is kcrit��
+� /2, whereas for large values of � it becomes independent
of recombination kcrit�2�. This behavior is similar to the
one previously observed in Fig. 3 for the case of horizontal
gene transfer with blocks of fixed size. The shape of the
phase boundary is independent of the block size in the hori-
zontal gene transfer process, assuming that the size of the
blocks is finite.

As a second example, we consider the square root fitness
f�u�=k��u�. Analytical results for the average composition,
obtained after Eq. �14�, are represented in Table V for blocks

of average size �M̄�=3.
From the values displayed in Table V, we notice that hori-

zontal gene transfer introduces a mild increase in the average
composition and, correspondingly, in the mean fitness of the
population fm=k��u�. This trend, which is opposite to the
quadratic fitness case, can be attributed to the negative
epistasis represented by the square root fitness, by similar
arguments as in the case of fixed block size.

Horizontal gene transfer does not affect the phase bound-
ary for the sharp peak fitness f�u�=A
u,1. In this case, Eq.
�31� is maximized at �c=1, with �c= �1+u� /2 from Eq. �32�.
Thus, the mean fitness becomes

fm = A − � −
�

�M̄�
�1 − e−�M̄��1−u�/2� . �34�

The error threshold is given, for u=0 in Eq. �34�, by the

condition A��+ �

�M̄�
�1−e−�M̄�/2�. However, we notice that

fm�u=1�=A−�� fm�u=0�. Hence, in the selected phase u
=1−O�N−1�, and the recombination effect becomes negli-
gible for infinite N. From the self-consistency condition fm

= P0A, we obtain the fraction of the population located at the
peak P0=1−� /A. Therefore, the true error threshold is given

by Acrit��, with A��+ �

�M̄�
�1−e−�M̄�/2� the limit of metasta-

bility for initial conditions with u�0.
Therefore, we conclude that horizontal gene transfer for

multiple size blocks displays a qualitatively similar behavior
to the corresponding process for fixed block size. A popula-
tion evolving under a smooth fitness function with positive
epistasis �e.g., quadratic, see Fig. 1� experiences an addi-
tional mutational load due to horizontal gene transfer, which
modifies the quasispecies structure, reducing the mean fit-
ness, and hence shifting the error threshold. On the contrary,
when epistasis is negative �e.g., square-root, see Fig. 1� a
beneficial effect is induced by horizontal gene transfer, in
agreement with the mutational deterministic hypothesis, as
we demonstrate in Appendix L. A discontinuous sharp peak
fitness function does not change the quasi-species distribu-
tion or the mean fitness, although it does introduce metasta-
bility.

C. The parallel model with two-parent recombination

Biological recombination, as occurs, for example, in viral
super; infection or coinfection or in sexual reproduction, in-
volves the crossing over of parental strands at random points
along the sequence. The copying process is carried out by the
action of polymerase enzymes, which move alternatively
along one or the other parental strand. An approximate rep-
resentation of this process is to consider that the polymerase
enzyme starts, with probability 1 /2 on either parental strand,
copying one base at a time. We consider the crossovers to
occur because there exists a probability pc per site that the
polymerase “jumps” from its current position towards the
other parental strand. Alternatively, the enzyme progresses
along the current strand with probability 1− pc. A pictorial
representation is shown in Fig. 4.

For this particular process representing the wandering
path followed by the polymerase enzyme, the recombination
coefficients Rkl

i in Eq. �1� are given by the exact analytical
expression

TABLE V. Analytical results for horizontal gene transfer in the

parallel model for the square-root fitness f�u�=k��u�, with �M̄�=3.

k � uanalytic

2.0 0.0 0.4855

2.0 0.5 0.4889

2.0 1.0 0.4915

2.0 1.5 0.4936

2.5 0.0 0.5396

2.5 0.5 0.5425

2.5 1.0 0.5448

2.5 1.5 0.5466

5.0 0.0 0.6523

5.0 0.5 0.6540

5.0 1.0 0.6554

5.0 1.5 0.6566

1 /2

1 /2

1-p c

p c 1 -p c
p c

1 -p c

p c 1 -p c
p c

1 -p c

P aren t 1

P aren t 2

O ffsp ring

FIG. 4. �Color online� Pictorial representation of the two-parent
genetic recombination process considered in the theory.
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Rkl
i =

1

2 �

�j=	1�

�1 + s1
ks1

i

2
	�1+�1�/2�1 + s1

l s1
i

2
	�1−�1�/2


 ��1 − pc��1+�1�2�/2pc
�1−�1�2�/2�


�1 + s2
ks2

i

2
	�1+�2�/2�1 + s2

l s2
i

2
	�1−�2�/2


 ��1 − pc��1+�2�3�/2pc
�1−�2�3�/2�


�1 + s3
ks3

i

2
	�1+�3�/2�1 + s3

l s3
i

2
	�1−�3�/2


 . . . 
 ��1 − pc��1+�N−1�N�/2pc
�1−�N−1�N�/2�


�1 + sN
k sN

i

2
	�1+�N�/2�1 + sN

l sN
i

2
	�1−�N�/2

. �35�

Here, the recombining parental sequences are Sk
= �s1

k ,s2
k , . . . ,sN

k �, Sl= �s1
l , . . . ,sN

l � and the offspring sequence
is Si= �s1

i ,s2
i , . . . ,sN

i �, with sj = 	1.
Using Eq. �35�, Eq. �1� representing the time evolution of

an infinite population of binary sequences experiencing rep-
lication, point mutations and two-parent recombination, ex-
actly becomes

dqi

dt
= riqi + �

k=1

2N

�ikqk + �N�
k=1

2N

1

2 �

�j=	1�


���
j=2

N

pc
�1−�j−1�j�/2�1 − pc��1+�j−1�j�/2�


 �
j=1

N �1 + sj
ksj

i

2
	�1+�j�/2

�
l=1

2N

pl


�1 + sj
l

2

sj

i ,+1 +
1 − sj

l

2

sj

i ,−1	�1−�j�/2�qk − �Nqi,

�36�

where, again, pl=ql /�l=1
2N

ql is the normalized probability for
sequence 1� l�2N.

From Eq. �36�, the recombination operator corresponding
to this recombination process in the spin Boson representa-
tion is

R̂ =
1

2�
l=1

2N

pl �

�i=	1�

�Î1
�1+�1�/2R̂l�1��1−�1�/2�


 ��1 − pc��1+�1�2�/2pc
�1−�1�2�/2� 
 �Î2

�1+�2�/2R̂l�2��1−�2�/2�


 ��1 − pc��1+�2�3�/2pc
�1−�2�3�/2� 
 �Î3

�1+�3�/2R̂l�3��1−�3�/2�


 ¯ 
 ��1 − pc��1+�N−1�N�/2pc
�1−�N−1�N�/2�


 �ÎN
�1+�N�/2R̂l�N��1−�N�/2� − Î � g�
R̂l�j��� − Î . �37�

Here, the local recombination operator is R̂l�j�= â��j�†Dj
lâ��j�,

with

Dj
l =�

1 + sj
l

2

1 + sj
l

2

1 − sj
l

2

1 − sj
l

2
� . �38�

The Î j are the identity operators acting on site 1� j�N,

whereas Î=� j=1
N Îj is the identity operator for the entire se-

quence vector.

1. The Hamiltonian

The Hamiltonian describing the evolution of this system
in the spin Boson representation is given by

− Ĥ = Nf� 1

N
�
j=1

N

â�†�j��3â��j�� + ��
j=1

N

�â�†�j��1â��j� − Î�

+ �N„g�
R̂l�j��� − Î… . �39�

We introduce a Trotter factorization

e−Ĥt = lim
M→�

� �Dz�*Dz���z�M���
k=1

M

�z�k�e−�Ĥ�z�k−1�	�z�0� .

�40�

As shown in Appendix D the partition function is

Z =� �D�̄D�D�̄D��e−S��̄,�,�̄,��. �41�

Here, the action in the continuous time limit is given by

S��̄,�,�̄,�� = − N�
0

t

dt�− �̄� − �̄� − � − � + f��� + �g����

− N ln Q . �42�

As shown in Appendix E, the recombination term can be
represented, for 0� pc�1 /2, by the exact finite series

g�
� j
l�� = �

l=1

2N

pl��
j=1

N �1 + � j
l

2
	 + �

1�i�j

N

�1 − 2pc� j−i



1 − � j

l

2

1 − �i
l

2 �
k�i,j

N �1 + �k
l

2
	 + �

1�i�j�k�n

N


�1 − 2pc� j−i+n−k1 − � j
l

2

1 − �i
l

2

1 − �n
l

2

1 − �k
l

2


 �
m�i,j,k,n

N �1 + �m
l

2
	 + ¯

+ �1 − 2pc��N/2��
j=1

N �1 − � j
l

2
	� , �43�

where we used the notation � j
l =z�

k
*�j�Dj

lz�k−1�j�, and Dj
l is de-

fined in Eq. �38�.
We consider first the case when pc=1 /2 in the above ex-

pression. Then, we have
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g�
� j
l�,pc = 1/2� = �

l=1

2N

pl�
j=1

N

�1 + � j
l�/2. �44�

We notice that the recombination term in the differential Eq.

�36� satisfies �l=1
2N

plRkl
i �1, ∀k , i, because Rkl

i �0 and

�i=1
2N

Rkl
i =1. In our field theoretic representation of the model,

this condition is equivalent to g�
� j
l���1 for any physical

state. We also have �� j=1
N �

1+� j
l

2 ���1. If we consider evaluat-
ing the g interaction term perturbatively, as in Appendix A,
we obtain terms such as

�g� = ��1 + ����/2�N + ��1 + ����/2�N−2


�1/8��
l

pl�
i�j

�
�i
l
� j

l�z + ¯ , �45�

where ���=�lpl�1 /N�� j�� j
l�z. Since both the correlations of

the spins in the Di
l matrix for typical, likely l and the corre-

lations in the z fields are each O�1 /N�, the interaction term g
in Eq. �44� contributes nothing, unless ���=1−O�1 /N�, in
which case �g�=O�N0�.

For the general case of 0� pc�1 /2, we notice that 0
�1−2pc�1. Making the ansatz that correlations between z
fields and correlations between spins of typical, likely se-
quences l each remain O�1 /N� at different sites, terms other
than the first in Eq. �43� are the least O�1 /N� smaller when
���=1−O�1 /N�. Thus, when ����1, the first term domi-
nates the series, and the others become arbitrarily small, thus
recovering the same expression as for pc=1 /2. On the other
hand, when ����−1, we notice that the dominant terms are
the last ones. However, those terms are proportional to pow-
ers of 1−2pc of order N, whereas the number of these terms
is of just polynomial order in N. Therefore, for N very large
these terms become arbitrary small. Thus, we conclude that
in the limit N→�, regardless of the value of pc, the function
g is represented by Eq. �44�.

In the particular case of uniform crossover, pc=1 /2, and
when the fitness function is permutation invariant, i.e., it
depends only on the average composition of the sequence
through the average base composition u, it is possible to
reformulate the differential equation �1� for the evolutionary
dynamics of an infinite population of binary sequences in
terms of the distribution of classes

Pl = �
j�Cl

pj , �46�

where Cl represents the class of sequences with l, “−1” spins.
Although all the sequences in a given class do not have the
same dynamics, we can nonetheless calculate the class dy-
namics exactly:

dPl

dt
= N� f�2l/N − 1� − �

l�=0

N

Pl�f�2l�/N − 1��Pl

+ ��N − l + 1�Pl−1 + ��l + 1�Pl+1 − N�Pl

+ �N�
l1,l2

R�l�l1,l2�Pl1
Pl2

− N�Pl. �47�

The coefficients R�l � l1 , l2� represent the probability that a

pair of parental sequences in the classes Cl1
, Cl2

, due to uni-
form crossover recombination, generate a child sequence in
the class Cl. The number of sequences in these classes is � N

l1
�,

� N
l2

�, and � N
l �, respectively. For a given pair of parental se-

quences, let us consider the variables n++, n+−, n−+, and n−−,
representing the number of pairs of �+1, +1�, �+1,−1�,
�−1, +1�, and �−1,−1� spins, respectively. These variables
satisfy the equation N=n+++n+−+n−++n−−. We further notice
that these variables also satisfy n−+= l1−n−− and n+−= l2
−n−−. Considering that from each pair of �+1,−1� or
�−1, +1� spins in the parental sequences, the child sequence
will inherit a “−1” spin with probability 1 /2, while from a
pair of the kind �−1,−1� it will inherit a “−1” spin with
probability 1, we have the explicit analytical expression for
these coefficients

R�l�l1,l2� = �
n=max
0,l1+l2−N�

min
l1+l2−l,l1,l2� � N

n,l1 − n,l2 − n
	

�N

l1
	�N

l2
	


�l1 + l2 − 2n

l − n
	2−�l1+l2−2n�. �48�

The first factor is the probability for a configuration with n
�n−−, given l1, l2, and l. The second factor is the number of
ways of picking l−n− “−1” spins among n+−+n−+. The third
factor is just �1 /2�n−+�1 /2�n+−�1�n−−. These coefficients are
different from zero only if

max
0,l1 + l2 − N� � l � min
N,l1 + l2� . �49�

They also satisfy the following properties:

R�l�l1,l2� = R�l�l2,l1� , �50�

�
l=0

N

R�l�l1,l2� = 1 ∀ l1,l2, �51�

R�N�N,N� = R�0�0,0� = 1. �52�

In the limit of large N, we find that the recombination coef-
ficients satisfy a Gaussian distribution in the variables u1
=1−2l1 /N, u2=1−2l2 /N, and u=1−2l /N �see Appendix F�:

Ru1,u2

u �
e−N��u1 + u2�/2 − u�2/�1−u

*
2 �

���1 − u*
2 �/N

, �53�

where fm= f�u*�.
This form of the recombination operator, Eq. �53�, is

equivalent to Eq. �44� with sj
l replaced by u in the D matrix.

Alternatively, we notice that when the singular behavior of
the function g can be described as a delta function, we have
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g = �
l=1

2N

pl
�1/N��j=1
N z�

k
*�j�Dj

lz�k−1�j�,1

= �
l=1

2N

pl�
0

2� d�

2�
exp�i���1/N�� j=1

N
z�

k
*�j�Dj

lz�k−1�j� − 1��

= �
l=1

2N

pl�
0

2� d�

2�
e−i��1 +

i�

N
�
j=1

N

z�
k
*�j�Dj

lz�k−1�j�

+
1

2!
� i�

N
	2

�
j,m=1

N

z�
k
*�j�Dj

lz�k−1�j�z�
k
*�m�Dm

l z�k−1�m� + ¯ � .

�54�

By noticing that correlations between compositions at differ-
ent sites along the sequence are of order O�N−1�, we have
that for the second order correlation

�Dj
lDm

l � − �Dj
l�2 � O�N−1� , �55�

where �Dj
l�=�l=1

2N
plDj

l �Dj is the population average. A simi-
lar analysis for the higher order correlations allows us to
factorize order by order the terms in the series Eq. �54�, to
obtain

g � 
�1/N��j=1
N z�

k
*�j�Djz�k−1�j�,1 + O�N−1� . �56�

We are interested in the long term, steady state distribution,
when the average base composition u�j�= �sj

l��u becomes
independent of time. In this limit, the trace defined by Eq.
�D9� becomes

lim
t→�

ln Qc

t
=

�̄c

2
+ ��̄c��̄c + u�̄c� + �� + �̄c/2�2�1/2. �57�

Hence, from Eq. �42�, the saddle point action is

lim
N,t→�

ln Z

Nt
= lim

t→�

− Sc

Nt
= fm

= max
�c,�̄c,�c,�̄c

�− �̄c�c − �̄c�c − � − � + �g��c�

+ f��c� +
�̄c

2
+ ��̄c��̄c + u�̄c� + �� +

�̄c

2
	2�1/2� .

�58�

As shown in Appendix G, we find

− Sc

Nt
= max

�c,�c

� f��c� − � − � + �g��c� +
�

1 − u2 �2�c − 1 − u�c�

−
��u�

1 − u2 ��2�c − 1 − u�c�2 − �1 − u2��1 − �c
2��1/2� .

�59�

Because of the singular behavior of the function g��c�, to
find the saddle point we need to consider three separate
cases: �c�1, �c=1, and �c=1−O�1 /N�. The existence of
different expressions for the mean fitness suggests the possi-

bility of different selected phases in certain conditions. We
also notice that the saddle point analysis may not apply ex-
actly, unless g��c�=
�c,1.

Case 1: �c�1. For this case, we look for a saddle point in
the field �c, in the interior of the domain, �c�1 where
g��c�=0





�c
�− Sc

Nt
	 =

2�

1 − u2 −
��u�

1 − u2



2�2�c − 1 − u�c�

��2�c − 1 − u�c�2 − �1 − u2��1 − �c
2��1/2 = 0.

�60�

From Eq. �60�, we solve for �c as a function of �c

�c��c� =
1 + u�c

2
+

1

2
�1 − �c

2. �61�

Substituting Eq. �61� in the saddle-point action Eq. �59�, we
obtain

fm
�1� = max

−1��c�1

f��c� − � − � + ��1 − �c

2� . �62�

Case 2: �c=1. The mean fitness is obtained from Eq. �59�
as

fm
�2� = max

−1��c�1

f��c�� − � +

�

1 − u2 �1 − u�c − �u�c − u2��� .

�63�

Case 3: �c=1−O�1 /N�. In this case, additional analysis is
necessary to calculate the mean fitness due to the singular
behavior of the g��c� function. For a smooth fitness function,
we can argue this case does not exist. We first consider the
Hamiltonian �39� for the case g=0. The largest eigenvalue,
fm, is shifted by −� relative to the �=0 case. This allows us
to calculate the average composition, u*, from the implicit
relation fm���= fm��=0�−�= f�u*�. Alternatively, if we con-
sider the differential equation for the unnormalized class
probabilities, dQ /dt=LQ, we see that the differential opera-
tor L looks similar to that in the absence of recombination,
save for a shift of −� in the fitness function. Thus, the vari-
ance of the population is given by �33� �u

2 /N
=2�u* / �Nf��u*��. Considering more carefully the g func-
tion, we find �du1du2Ru1u2

u P�u1�P�u2�
=exp�−N�u−u*�2 / �2�2�� /�2��2N, with �2=�u

2 /2+ �1
−u*

2 � /2. This term is exponentially negligible compared to
the −�P�u� term when �2��u

2, since P�u�
=exp�−N�u−u*�2 / �2�u

2�� /�2��u
2N. In other words, we must

strictly be in case 1 when

1 − u*
2 � 2�u*/f��u*� . �64�

We denote the value of � at which

1 − u*
2 = 2�u*/f��u*� at � = �* �65�

as �*. Now, at this value of �* we have
�du1du2Ru1u2

u P�u1�P�u2�= P�u�. Thus, the term proportional
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to � in Hamiltonian �39�, or differential equation �47�, ex-
actly vanishes. Thus, we have dfm /d�=0 and dP�u� /d�=0 at
this value of �. There is spectral rigidity. This implies that for
���*, the distribution P�u� is independent of �, and that the
value of u* is constant. In other words, the value of fm in
case 2 must be constant with �. Assuming fm varies continu-
ously with � in case 1, and that the fitness values for case 1
and case 2 are equal at a single value of �, therefore, case 2
is simply case 1 with the value �=�*

fm�� � �*� = fm�� = �*� . �66�

Equations �62� and �63� provide an exact analytical solution
for the mean fitness of an infinite population, for a general
permutation invariant replication rate represented by a con-
tinuous, smooth function f�u�. For a non-smooth fitness
function, additional analysis is necessary, since f��u*� is un-
defined, and P�u� may no longer be Gaussian.

2. Examples and numerical tests

We investigate the phase diagrams, as predicted from our
theoretical equations �62� and �63� for three different fitness
functions: A sharp peak, a quadratic fitness landscape and a
square-root fitness landscape. For the sharp peak landscape
f�u�=A
u,1, we notice that the maximum is achieved at �c
=1, with u=1−O�N−1�. From Eqs. �63� and �62�, we obtain

fm
�2� = A − � � fm

�1� = A − � − � . �67�

Therefore, for the sharp peak only a single selected phase is
observed. In this case, the function g��c� is not exactly a
Kronecker delta 
�c,1, we are in case 3, and thus we find a
small correction, approximately linear in �, to the saddle-
point prediction. In the selected phase, where the population
is exponentially localized near u=1 for large N, Eq. �48�
becomes R�l � l1 , l2���l1+ l2�!2−l1−l2 / �l!�l1+ l2− l�!�. By ana-
lyzing the differential equation at zeroth-order in � for large
N, we find that the class distribution is given by Pl

�0�

= P0
�0��1− P0

�0��l. Hence, we find that at first order in �, the

fraction of the population P0 located at the peak is given by

P0 = 1 − �/A − ��/A��1 − 4

1 −
�

A

�2 −
�

A
	2� + O��2� . �68�

We note that this value of fm=AP0 interpolates between fm
�1�

for A /�=1 and fm
�2� for A /�=� �see Fig. 5�. There is no

dependence on pc because the −1 spins are separated by
O�N� sites.

As a second example, we consider the quadratic fitness
landscape, f�u�=ku2 /2. This smooth, continuous fitness
function allows for the use of the exact analytical formulas
�62� and �63�. By maximizing Eq. �62� with respect to �c,
when �c�1 and hence g��c�=0, we find

fm
�1� =

k

2
��1 −

�

k
	2

−
2�

k
� . �69�

This mean fitness defines a selective phase S1.
According to our previous analysis, when �c=1 and

g��c�=1, we maximize Eq. �63� in �c. Here, we consider that
the order parameters �c and u have the same sign, u�c�0.
We then have u�c�u2 in Eq. �63� �56�. Hence, we find

fm
�2� =

k

2
�1 −

2�

k
	 , �70�

which defines a second selective phase S2.
By applying the self-consistency condition fm

�1,2�=ku2 /2,
we find the following phases:

S1: u = ��1 −
�

k
	2

−
2�

k
�1/2

,
2�

�
�

�

k
� 1 − �2�

k
�1/2

,

S2: u =�1 −
2�

k
,

2�

�
�

�

k
�

1

2
,

NS: u = 0, otherwise. �71�

We note that the phase transition between case 1 and case 2
is exactly as predicted by Eq. �65�. We further note that the
mean fitness is independent of � for ���*=�2 / �2k�, exactly
as predicted by Eq. �66�.

The system of differential equations �47� provides an ex-
act representation of the evolution dynamics for an infinite
population, when uniform crossover probability, pc=1 /2, is
assumed. On the other hand, our analytical equations �62�
and �63� for smooth fitness, or Eq. �68� for the discontinuous

TABLE VI. Stochastic process vs analytical theory for two-
parent recombination in the parallel model for the quadratic fitness
f�u�=ku2 /2, with k /�=4.0, � /�=3.0, and N=100.

pc ustochastic uanalytic

0.1 0.7065 0.7071

0.3 0.7052 0.7071

0.5 0.7058 0.7071

10
-5

10
-4

10
-3

10
-2

1/N

0.72

0.73

0.74

0.75

0.76

P
0di

ffe
q

ν/µ = 2.0, A/µ = 4.0
ν/µ = 1.0, A/µ = 4.0
utheo = 0.7449

utheo = 0.7398

FIG. 5. Convergence of the numerical results towards the per-
turbative theoretical value for two-parent recombination in the par-
allel �Kimura� model for the sharp peak fitness. In this example,
A /�=4.0.
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sharp peak, predict that the equilibrium results should be
independent of the crossover probability, pc. To test this
theory, we performed exact stochastic simulations based on a
Lebowitz-Gillespie algorithm �57,58�. We generate a popula-
tion of M =10 000 sequences initially in the wild type. The
size of the finite population represented in the simulation was
chosen large enough such that the results become indepen-
dent of size M. Then, the population is evolved in time by
point mutation, recombination, and replication with rates
proportional to �, �, and f�ul� respectively, with ul

= 1
N� j=1

N sj
l the average composition of sequence Sl, 1� l�M.

For that purpose, a list is generated by defining �l=�+�
+ f�ul�, �=�l=1

M �l. With probability �l /�, a sequence 1� l
�M is chosen from the population to undergo either a single
point mutation with probability � /�l, replication with prob-
ability f�ul� /�l, or recombination with another sequence with
probability � /�l according to the process described in Fig. 4.

To preserve the size M of the population, when replication
or recombination is performed, a sequence chosen at random
from the population is substituted with the offspring. The
time increment after any of these events is performed is cal-
culated as dt=−ln�w� / �N��, with w� �0,1� a uniformly dis-
tributed random number. The results obtained from this sto-
chastic simulation are compared with the theoretical
prediction in Table VII for the sharp peak fitness landscape
and uniform crossover, pc=1 /2.

In agreement with our theoretical prediction, as shown in
Table VI from stochastic simulations in the quadratic fitness
landscape, the effect of recombination is independent of the
polymerase crossover probability pc. The probability distri-

butions obtained for the systems considered in Table VI are
displayed in Fig. 6. Clearly, the distributions are independent
of pc, in agreement with the theory.

We obtain a direct numerical solution of the deterministic
system of differential equations �47�, which provides an ex-
act representation of the evolution dynamics for an infinite
population experiencing uniform crossover recombination,
pc=1 /2. A comparison between these numerical solutions,
and results obtained from the stochastic simulation for a sys-
tem large enough to eliminate finite size effects, is displayed
in Table VII for the sharp peak fitness. The theoretical pre-
diction from the analytical formula �68� is also shown for
comparison. It is evident from this table that the effect of
recombination is independent of the polymerase crossover
probability pc, in agreement with our theoretical predictions.

From the data presented in Table VII, we notice that the
deterministic system of differential equations provides an ac-
curate representation of the underlying stochastic dynamics
for the case of uniform crossover, pc=1 /2. Thus, the results
obtained from the numerical solution of the deterministic
system of differential equations can be fairly compared with
the analytical theory.

It is remarkable that the small, but finite, effect introduced
by recombination in the structure of the quasispecies distri-
bution for the sharp peak case is not a consequence of the
Muller’s ratchet phenomenon �2� characteristic of finite
populations. Indeed, the shift in the wild-type probability P0
due to recombination, as predicted from our analytical equa-
tion �68�, was derived from the system of differential equa-
tions �47� that describes the time evolution of an infinite
population. Moreover, this closed analytical result is in ex-
cellent agreement with the numerical solution of the system
of differential equations �47�, as displayed in Fig. 8 and
Table VIII. A good agreement between our analytical and

TABLE VII. Stochastic process vs differential equation for two-parent recombination in the parallel
model for the sharp peak fitness A /�=4.0, N=400.

� /� ustochastic udiffeq P0
stochastic, pc=0.1 P0

stochastic, pc=0.3 P0
stochastic, pc=0.5 P0

diffeq P0
analytic

0.0 0.998337 0.998336 0.75017 0.75017 0.75017 0.75016 0.75

1.0 0.998329 0.998326 0.7455 0.7454 0.74591 0.74544 0.7449

2.0 0.998312 0.998317 0.7415 0.7414 0.74085 0.74140 0.7398

TABLE VIII. Analytical theory vs numerical solution for two-
parent recombination in the parallel model for the quadratic fitness
f�u�=ku2 /2 with N=800 and k /�=4.0.

� /� udiffeq uanalytic

0.0 0.7499 0.7500

0.025 0.7417 0.7416

0.05 0.7329 0.7331

0.1 0.7202 0.7159

0.5 0.7091 0.7071

1.0 0.7083 0.7071

2.0 0.7075 0.7071

3.0 0.7073 0.7071

-1 -0.5 0 0.5 1
2 l/N - 1

0

0.05

0.1

0.15

0.2

P
l

pc = 0.1, ν/µ = 3.0, k/µ = 4.0

pc = 0.3, ν/µ = 3.0, k/µ = 4.0

pc = 0.5, ν/µ = 3.0, k/µ = 4.0

FIG. 6. �Color online� Probability distributions for two-parent
recombination in the parallel model for the quadratic fitness f�u�
=ku2 /2, with k /�=4.0 and � /�=3.0, obtained from stochastic
simulations with M =10 000 sequences of N=100 bases and differ-
ent values of pc.
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differential equation results, which correspond to the infinite
population case, and the stochastic simulation is expected
when the later is performed in a large enough population. We
determined that for the parameters we consider, M =10 000
sequences provides simulation results that are independent of
the population size for the sharp peak fitness function, thus
allowing for a comparison with the infinite population theory
expressed by the differential equations �47� and with our
analytical solution �68�.

Notice that for the quadratic fitness, the analytical theory
reproduces the differential equation results within O�N−1�.
The convergence towards the theoretical value as a function
of the system size 1 /N, for parameters within the S1 phase
defined in Eq. �71�, is displayed in Fig. 7, and for the S2
phase in Fig. 8.

As a final example, we apply our analytical solution �62�
and �63� to study the square-root fitness f�u�=k��u�, as dis-
played in Table IX, where analytical theory and direct nu-
merical solution of the differential equation agree to O�N−1�.

As shown in Table IX, two-parent recombination in the
square-root fitness landscape enhances selection towards se-

quences which are on average more fit, as observed by a
slight increase of the average composition u, with respect to
the case when recombination is absent. This effect, which
was already observed for the square-root landscape in the
presence of horizontal gene transfer, can be attributed to the
negative �see Fig. 1� epistatic interactions introduced by the
square-root fitness, in agreement with the mutational deter-
ministic hypothesis, Appendix N.

An additional interesting effect in two-parent recombina-
tion, which was observed in the quadratic as well as in the
square-root fitness landscapes, is the presence of spectral ri-
gidity: the effect of recombination becomes independent of
the recombination rate for ���*.

In summary, from our generalization of the parallel or
Crow-Kimura model for an infinite population of evolving
sequences Eq. �36�, we conclude that two-parent recombina-
tion introduces a mild mutational load for discontinuous fit-
ness functions, such as a single sharp peak, and thus it can
shift the error-threshold transition. For smooth fitness func-
tions, the effect of recombination depends on the sign of
epistasis �see Fig. 1�, in agreement with the mutational de-
terministic hypothesis �9,10,13,14�. We show this analyti-
cally in Appendix N.

In contrast with horizontal gene transfer, recombination
affects the structure of the quasispecies �and the error thresh-
old transition� for a sharp peak fitness. We believe that this
fundamental difference between horizontal gene transfer and
recombination is because of the fact that the latter can gen-
erate a much larger diversity in the offspring per recombina-
tion event. Hence, the diversity barrier that, as previously
discussed in Sec. II, is imposed by the sharp exponential
distribution in the sharp peak case can be tunneled through
due to the more radical mixing effects of two-parent recom-
bination. Our analytical theory, which provides explicit ex-
pressions for the mean fitness fm and average composition u,
is developed in the realistic regime �N→��, considering that
typical viral genomes are N�103−104.

III. THE EIGEN MODEL

In this section, we present a generalization of the classical
Eigen model �24–26�, including the exchange of genetic ma-
terial between pairs of individuals in an infinite population
�49�,

TABLE IX. Analytical theory vs numerical solution for two-
parent recombination in the parallel model for the square-root fit-
ness f�u�=k��u�, with N=400, 800, 1000 and k /�=4.0.

� /� udiffeq, N=400 udiffeq, N=800 udiffeq, N=1000 uanalytic

0.0 0.6527 0.6525 0.65249 0.6523

0.1 0.6650 0.6672 0.6678 0.6710

0.3 0.6686 0.6697 0.66993 0.6710

0.5 0.6696 0.6703 0.67043 0.6710

0.8 0.6703 0.6707 0.67073 0.6710

1.0 0.6705 0.6708 0.67083 0.6710
10

-5
10

-4
10

-3
10

-2

1/N

0.71

0.72

0.73

0.74

0.75

<
u>

ν/µ = 0.1, k/µ = 4.0
ν/µ = 0.05, k/µ = 4.0
ν/µ = 0.025, k/µ = 4.0
utheo = 0.7331

utheo = 0.7416

utheo = 0.7159

FIG. 7. Convergence of the numerical results towards the theo-
retical value for two-parent recombination in the parallel model for
the selective phase S1 in Eq. �71�. In this example, k /�=4.0 and
� /��1 /8.

10
-4

10
-3

10
-2

1 / N

0.704

0.706

0.708

0.71

0.712

0.714

0.716

0.718

0.72

<
u>

ν/µ = 0.5, k/µ = 4.0
ν/µ = 1.0, k/µ = 4.0
ν/µ = 2.0, k/µ = 4.0
ν/µ = 3.0, k/µ = 4.0
utheory = 0.7071

FIG. 8. Convergence of the numerical results towards the theo-
retical value for two-parent recombination in the parallel model for
the selective phase S2 in Eq. �71�. In this example, k /�=4.0 and
� /��1 /8.
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dqi

dt
= �

j,k=1

2N

�BijCjkrk − 
ij
ikDi�qk. �72�

Here, recombination as well as mutation are considered to be
coupled to the replication process. Recombination is repre-
sented by the coefficients Cjk, which in general will be func-

tions of the frequencies qk, Cjk�
 jk+�lqlC̃kl
j /�k�qk� for the

constant recombination/mutation matrix C̃kl
j .

A. Horizontal gene transfer of nonoverlapping blocks

In this recombination scheme, we consider the exchange
of blocks of genetic material between pairs of individuals in
the population. We consider the blocks to be nonoverlapping,

such that we have N /M̄ of them. We define a block index

0�b�N /M̄ −1, and a site index within each block to be

M̄b+1� jb�M̄�b+1�. For this process, we have that the
nonlinear recombination term in the differential Eq. �72� is

Cjk � �1 −
�/M̄

N/M̄
	
 j,k +

�/M̄

N/M̄

 �

b=0

N/M̄−1


� �
jb=M̄b+1

M̄�b+1�


sjb
j ,sjb

k �
sjb
,+1

1 + u�jb�
2

+ 
sjb
,−1

1 − u�jb�
2

	� �
m�
jb�


sm
j ,sm

k . �73�

The recombination operator representing this process, as-

suming the recombination rate per block to be � /M̄, becomes

R̂ = �
b=0

N/M̄−1��1 −
�/M̄

N/M̄
	 �

jb=M̄b+1

M̄�b+1�

Î jb
+

�/M̄

N/M̄
�

jb=M̄b+1

M̄�b+1�

R̂jb� .

�74�

Here, we defined the single-site recombination operator as

R̂j = â�†�j�Dâ��j�, with the matrix D defined in Eq. �6�. We

consider the large N limit, while keeping N /M̄ �O�N�. Then,
the recombination operator defined in Eq. �74� becomes, to
order O�N−1�

R̂ = e−�/M̄exp���/N��b=0
N/M̄−1 �

jb=M̄b+1

M̄�b+1� â�†�j�Dâ��j�� .

�75�

1. The Hamiltonian

The Hamiltonian operator for the Eigen model, including
the horizontal gene transfer process described by the operator
�74� is given by

− Ĥ = Nexp�− � + ��/N�� j=1

N
â�†�j��1â��j��


exp�− �/M̄

+ ��/N��b=0
N/M̄−1 �

jb=M̄b+1

M̄�b+1� �â�†�jb�Dâ��jb���


 f� 1

N
�
j=1

N

â�†�j��3â��j�� − Nd� 1

N
�
j=1

N

â�†�j��3â��j�� .

�76�

The microscopic fitness function is f�u� and degradation
function is d�u�. Here, the matrix D is defined as in Eq. �6�.
We introduce a Trotter factorization of the evolution opera-
tor, in the basis of coherent states

e−Ĥt = lim
M→�

� ��
k=1

M

Dz�
k
*Dz�k��z�M���

k=1

M

�z�k�e−�Ĥ�z�k−1�	�z�0� .

�77�

As shown in Appendix H, the partition function is

Z =� �D�̄D�D�̄D�D�̄D��e−S��̄,�,�̄,�,�̄,��. �78�

Here, the action is defined by

S��̄,�,�̄,�,�̄,�� = − N�
0

t

dt�− �̄� − �̄� − �̄�

+ exp�− ��1 − �� − �/M̄ + ��/M̄��M̄�f���

− d���� − N ln Q . �79�

2. The saddle point limit

We consider the saddle point limit of the action defined by
Eq. �79�. In the saddle point limit, for long times, the trace
defined by Eq. �H11� becomes

lim
t→�

ln Qc

t
=

�̄c

2
+ ��̄c��̄c + u�̄c� + ��̄c + �̄c/2�2�1/2. �80�

In this saddle-point limit, the action is given by

lim
N,t→�

ln Z

Nt
= lim

t→�

− Sc

Nt
= max

�c,�̄c,�c,�̄c,�c,�̄c

� f��c�exp�− ��1 − �c�

− �/M̄ + ��/M̄��c
M̄� − d��c� − �̄c�c − �̄c�c − �̄c�c

+
�̄c

2
+ ��̄c��̄c + u�̄c�

+ ��̄c + �̄c/2�2�1/2� . �81�

As shown in Appendix I the mean fitness, defined from the
saddle point action fm=limN,t→� ln Z /Nt=−Sc /Nt, is

fm = max
−1��c�1


exp�− ��1 − �c��c�� − ��/M̄�



1 − ��c��c��M̄��f��c� − d��c�� . �82�

Here, the expressions �c��c� and �c��c� are given by
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�c��c� =
1 + u�c

2

+
�1 − �c

2

2

� +
�

2
�1 − u2��c

M̄−1

��� +
�

2
�c

M̄−1	2

−
�2u2

4
��c

M̄−1�2�1/2 ,

�83�

�c��c� = �1 − �c
2

� +
�

2
�c

M̄−1

��� +
�

2
�c

M̄−1	2

−
�2u2

4
��c

M̄−1�2�1/2 .

�84�

The average composition, u, is obtained from the self-
consistency condition fm= f�u�−d�u�.

Equation �82� is an exact analytical expression for the
equilibrium mean fitness of an infinite population of evolv-
ing sequences. This analytical expression is valid for arbi-
trary permutation invariant replication rate f�u� and degrada-
tion rate d�u�.

3. Examples

We consider first the quadratic fitness case f�u�=ku2 /2
+k0. By expanding the formulas �82�–�84� near the error
threshold �c�0, u�0, we obtain the phase boundary from
the critical condition

kcrit = �k0
1 + �/�

1 + �/�2��
. �85�

We notice that the phase boundary is qualitatively similar to
the horizontal gene transfer process analyzed in Sec. I I A 2,
Eq. �12� for the parallel model. As in this former case, we
notice that horizontal gene transfer introduces a mild muta-

tional load against selection for a smooth fitness �i.e., qua-
dratic�.

As a second example, we consider the square-root fitness
landscape f�u�=k��u�+1. In Table X, we evaluate our ana-
lytical Eqs. �82�–�84� for this particular case.

From the results displayed in Table X, we notice that hori-
zontal gene transfer increases the average composition u and
therefore the mean fitness of the population. This effect,
which is attributed to the negative epistasis introduced by the
square-root fitness �see Fig. 1�, is in agreement with the pre-
vious examples studied in the case of the parallel model, and
with the mutational deterministic hypothesis �7,10–12�, as
we prove in Appendix M.

As a third example, we consider the sharp peak fitness
f�u�= �A−A0�
u,1+A0. In this case, the maximum in Eq. �82�
corresponds to �c=1. From Eqs. �83� and �84�, we have �c
= �1+u� /2, �c=0, and hence after Eq. �82�

fm = Ae−�−��/M̄��1−�1 + u/2�M̄�. �86�

The error threshold is given, for u=0 in Eq. �86�, by the

condition Ae−�−��/M̄��1−1/2M̄��A0. However, we notice that
fm�u=1�=Ae−�� fm�u=0�. Hence, in the selected phase we
have u=1−O�N−1�. The fraction of the population located at
the peak P0 is obtained from the self-consistency condition
fm=AP0+A0�1− P0�

P0 =
Ae−� − A0

A − A0
. �87�

After Eq. �87�, we find the true error threshold at Acrit

=A0e�, while the condition Ae−�−��/M̄��1−2−M̄��A0 represents
the limit of metastability for initial conditions with u�0. We
notice that this result is similar to the exact solution in the
absence of horizontal gene transfer �33�. Hence, as previ-
ously discussed in Sec. I IA for the parallel model, we con-
clude that horizontal gene transfer does not affect the struc-
ture of the quasispecies for a discontinuous, single sharp
peak fitness.

B. Horizontal gene transfer for multiple-size blocks

In analogy with the model treated in Sec. II B, we con-
sider the natural extension of horizontal gene transfer of

blocks with multiple size, with average �M̄� and �M̄� /N
=O�N−1�. Following a similar analysis as in the derivation of
Eq. �25�, we define the recombination operator for multiple-
size blocks as

R̂ � exp�− �M̄� + ��M̄�/N�� j=1

N
â�†�j�Dâ��j�� . �88�

1. The Hamiltonian

We consider horizontal gene transfer to be coupled to the
replication process. Moreover, we will consider that when
replication occurs, a horizontal gene transfer event also oc-

curs with a probability 0�� / �M̄��1. The Hamiltonian op-
erator for the Eigen model, including the horizontal gene

TABLE X. Analytical results for horizontal gene transfer in the

Eigen model for the square-root fitness f�u�=k��u�+1, with M̄ =3.

k � uanalytic

3.0 0.0 0.3346

3.0 0.5 0.3398

3.0 0.8 0.3422

3.0 1.5 0.3466

5.0 0.0 0.3588

5.0 0.5 0.3642

5.0 0.8 0.3667

5.0 1.5 0.3713

8.0 0.0 0.3741

8.0 0.5 0.3796

8.0 0.8 0.3822

8.0 1.5 0.3869
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transfer process described by the operator Eq. �88� is given
by

− Ĥ = Nexp�− � + ��/N�� j=1

N
â�†�j�Dâ��j��


�1 −
�

�M̄�
+

�

�M̄�
e−�M̄�+��M̄�/N��j=1

N â�†�j�Dâ��j�	

 f� 1

N
�
j=1

N

â�†�j��3â��j�� − Nd� 1

N
�
j=1

N

â�†�j��3â��j�� .

�89�

We introduce a Trotter factorization

e−Ĥt = lim
M→�

� �Dz�*Dz���z�M��
j=1

M

�z�k�e−�Ĥ�z�k−1��z�0� . �90�

As shown in Appendix J, the partition function is

Z =� �D�̄D�D�̄D�D�̄D��e−S��̄,�,�̄,�,�̄,��. �91�

Here, the action in the continuous time limit is

S��̄,�,�̄,�,�̄,�� = − N�
0

t

dt��− �̄� − �̄� − �̄� + e−��1−��


�1 −
�

�M̄�
+

�

�M̄�
e−�M̄��1−��� f���

− d���� − N ln Q . �92�

2. The saddle point limit

The saddle point limit is exact as N→� in Eq. �92�. After
a similar procedure as in Sec. III A 2, we find the saddle
point equation for the mean fitness

fm = max
−1��c�1

�e−��1−�c��1 −
�

�M̄�
+

�

�M̄�
e−�M̄��1−�c��


f��c� − d��c�� . �93�

Here, the fields �c and �c are expressed as functions of �c

�c��c� = �1 − �c
2




�

�M̄�
+ �1 −

�

�M̄�
�e�M̄��1−�c� +

�

2�

�� �

�M̄�
+ �1 −

�

�M̄�
�e�M̄��1−�c� +

�

2�	2

−
u2�2

4�2 �1/2 ,

�94�

�c��c� =
1 + u�c

2
+

�1 − �c
2

2




�

�M̄�
+ �1 −

�

�M̄�
�e�M̄��1−�c� +

��1 − u2�
2�

�� �

�M̄�
+ �1 −

�

�M̄�
�e�M̄��1−�c� +

�

2�	2

−
u2�2

4�2 �1/2 .

�95�

Equations �93�–�95� represent an exact analytical solution
for the equilibrium mean fitness of an infinite population
experiencing horizontal gene transfer of variable blocks size.
This expression is valid for arbitrary, permutation invariant
replication rate f�u� and degradation rate d�u�.

3. Examples

We consider first the sharp peak fitness f�u�= �A
−A0�
u,1+A0. In this case, the maximum in Eq. �93� is at
�c=1. From Eqs. �94� and �95�, we obtain �c=0 and �c
= �1+u� /2. Substituting these values in Eq. �93�, we obtain
for the mean fitness

fm = e−��1 −
�

�M̄�
+

�

�M̄�
e−�M̄��1−u�/2�A . �96�

The error threshold for u=0 is obtained from Eq. �96� by the

condition Ae−��1− �

�M̄�
+ �

�M̄�
e−�M̄�/2��A0. However, we notice

that fm�u=1�=Ae−�� fm�u=0�. Therefore, in the selected
phase the average composition u=1−O�N−1�, and the effect
of recombination becomes negligible for the sharp peak fit-
ness. The fraction of the population located at the peak P0 is
obtained from the self-consistency condition fm=AP0+A0�1
− P0�

TABLE XI. Analytical results for horizontal gene transfer in the
Eigen model for the square-root fitness f�u�=k��u�+1, with

�M̄�=3.

k � uanalytic

3.0 0.0 0.3346

3.0 0.5 0.3409

3.0 0.8 0.3450

3.0 1.5 0.3546

5.0 0.0 0.3588

5.0 0.5 0.3654

5.0 0.8 0.3695

5.0 1.5 0.3794

8.0 0.0 0.3741

8.0 0.5 0.3809

8.0 0.8 0.3851

8.0 1.5 0.3950
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P0 =
Ae−� − A0

A − A0
. �97�

From this expression, we find that the true error threshold for
the sharp peak fitness is Acrit=e�A0, with the condition

Ae−��1− �

�M̄�
+ �

�M̄�
e−�M̄�/2��A0 representing the limit for

metastability for initial conditions with u�0.
As a second example, we consider the quadratic fitness

f�u�=ku2 /2+k0. An analytical expression for the phase
boundary is obtained from Eqs. �93�–�95� near the error
threshold �c�0, u�0. We find

kcrit = �k0

1 +
�

�

1 +
�

2�

. �98�

For small �, the critical value is kcrit�k0��+� /2�.
As a final example, we consider the square-root fitness

f�u�=k��u�+1. Analytical results, as obtained from Eqs.
�93�–�95� for this case, are presented in Table XI.

We notice that the results obtained for the horizontal gene
transfer process with variable block size agree with the cor-
responding ones when the size of the recombination blocks is
fixed. We recall that this correspondence was also observed
and discussed in the previous section for the parallel model,
so similar arguments apply to the Eigen model as well. An
analytical proof is provided in Appendix M.

C. The Eigen model with two-parent recombination

For the Eigen model, we introduce the recombination pro-
cess described in Sec. II C and illustrated in Fig. 4, which
considers the exchange of genetic material between pairs of
sequences due to crossovers governed by the polymerase
switching from one parental chromosome to the other with
probability pc per site. For the Eigen model, mutation and
recombination are considered to be coupled to the recombi-
nation process, as stated in the generic differential equation
�72�. We will consider that during replication, a sequence can
recombine with probability ��1, or just replicate without
recombining with probability 1−�. This process is repre-
sented by the coefficients in Eq. �72�

Cjk = �1 − ��
 j,k +
�

2 �

�n=	1�


���
n=2

N

pc
�1−�n−1�n�/2�1 − pc��1+�n−1�n�/2�


 �
l=1

2N

pl�
n=1

N �1 + sn
ksn

j

2
	�1+�n�/2


�1 + sn
l

2

sn

j ,+1 +
1 − sn

l

2

sn

j ,−1	�1−�n�/2� . �99�

Here, again, pl=ql /�l=1
2N

ql is the normalized probability for
the sequence 1� l�2N.

In the spin Boson representation, we express the Eigen
model Hamiltonian by the operator

− Ĥ = Nexp�− � + ��/N�� j=1

N
â�†�j��1â��j����1 − ��Î

+ �g�
â�†�j�Dj
lâ��j���� 
 f� 1

N
�
j=1

N

â�†�j��3â��j��
− Nd� 1

N
�
j=1

N

â�†�j��3â��j�� . �100�

Here, g�
R̂j
l�� was defined in Eq. �37�, and the matrices Dj

l

were defined in Eq. �38�. We introduce a Trotter factorization

e−Ĥt = lim
M→�

� �Dz�*Dz���z�M���
k=1

M

�z�k�e−�Ĥ�z�k−1�	�z�0� .

�101�

As shown in Appendix K, the partition function is

Z =� D�̄D�D�̄D�D�̄D�e−S��̄,�,�̄,�,�̄,��. �102�

Here, the action is defined by

S��̄,�,�̄,�,�̄,�� = − N�
0

t

dt�
− �̄� − �̄� − �̄� + e−��1−��


�1 − � + �g����f��� − d���� − N ln Q .

�103�

1. The saddle point limit

For long times, a steady state condition is achieved. Then,
the fields become time independent, and we have

lim
t→�

ln Qc

t
=

�̄c

2
+ ��̄c��̄c + u�̄c� + ��̄c +

�̄c

2
	2�1/2

.

�104�

We look for the saddle point solution from the action

lim
N,t→�

ln Z

Nt
= lim

t→�

− Sc

Nt
= max

�̄c,�c,�̄c,�c,�̄c,�c

�− �̄c�c − �̄c�c − �̄c�c

+ e−��1−�c��1 − � + �g��c��f��c� − d��c� +
�̄c

2

+ ��̄c��̄c + u�̄c� + ��̄c +
�̄c

2
	2�1/2� �105�

Because of the singular behavior of the function g��c�, to
find the saddle point we need to consider three separate
cases: �c�1, �c=1, and �c=1−O�1 /N�. We notice that the
saddle point analysis may not apply exactly, unless g��c�
=
�c,1.

Case 1: �c�1. The mean fitness is given by
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fm
�1� = max

−1��c�1

�1 − ��e−��1−�1−�c

2�f��c� − d��c�� . �106�

We note �c is still given by Eq. �61�.
Case 2: �c=1. The mean fitness is given by

fm
�2� = max

−1��c�1

e−��1−�1−u�c−�u�c−u2��/�1−u2��f��c� − d��c�� .

�107�

Case 3: �c=1−O�1 /N�. In this case, additional analysis is
necessary to calculate the mean fitness due to the singular
behavior of the g��c� function. For a smooth fitness function,
we can argue this case does not exist. We first consider the
Hamiltonian �100� for the case g=0. In this case, the fitness
function is simply multiplied by �1−��. If the degradation
function is zero, the largest eigenvalue, fm is simply multi-
plied by �1−�� relative to the �=0 case. Without degrada-
tion, this result allows us to calculate the average composi-
tion, u*, from the implicit relation fm���= �1−��fm��=0�
= f�u*�. With a nonzero degradation function, the equation
for fm��� will be a bit more involved. Alternatively, if we
consider the differential equation for the unnormalized class
probabilities, dQ /dt=LQ, we see that the differential opera-
tor L looks like that in the absence of recombination, save for
a multiplication of �1−�� in the fitness function. Thus, the
variance of the population is given by �33� �u

2 /N=2�u*�1
−��f�u*� / 
N��1−��f��u*�−d��u*���. Considering more care-
fully the g function, we find as before this term is exponen-
tially negligible compared to the −�P�u� term when �2

��u
2. In other words, we must strictly be in case 1 when

1 − u*
2 � 2�u*�1 − ��f�u*�/��1 − ��f��u*� − d��u*�� .

�108�

We denote the value of � at which

1 − u*
2 = 2�u*�1 − ��f�u*�/��1 − ��f��u*� − d��u*��

at � = �* �109�

as �*. Now, at this value of �* we have
�du1du2Ru1u2

u P�u1�P�u2�= P�u�. Thus, the term proportional
to � in Hamiltonian �100� exactly vanishes. Thus, we have
dfm /d�=0 and dP�u� /d�=0 at this value of �. There is spec-
tral rigidity. This result implies that for ���*, the distribu-
tion P�u� is independent of �, and that the value of u* is
constant. In other words, the value of fm in case 2 must be
constant with �. Assuming fm varies continuously with � in
case 1, and that the fitness values for case 1 and case 2 are
equal at a single value of �, which mathematically may be
negative, case 2 is simply case 1 with the value �=�*

fm�� � �*� = fm�� = �*� . �110�

Equations �106� and �107� constitute an exact analytical ex-
pression for the equilibrium mean fitness of an infinite popu-
lation of sequences evolving under the dynamics of the
Eigen model, and experiencing two-parent recombination.
These equations are exact for a smooth, permutation invari-
ant replication rate f�u� and degradation rate d�u�.

For a nonsmooth fitness function, additional analysis is
necessary, since f��u*�−d��u*� is undefined, and P�u� may
no longer be Gaussian.

2. Examples

We investigate the phase diagrams, as predicted from our
theoretical equations, for two different fitness functions: A
sharp peak and a quadratic fitness landscape. As an example,
we consider the sharp peak fitness f�u�= �A−A0�
u,1+A0.
The maximum is obtained at �c=1, u=1−O�N−1�. From Eqs.
�107� and �106� we have

fm
�2� = Ae−� � fm

�1� = �1 − ��Ae−�. �111�

Hence, for the sharp peak fitness a single selective phase is
observed. In this case, the function g��c� is not exactly a
Kronecker delta 
�c,1, we are in case 3, and we expect to
observe a small correction, approximately linear in �, from
the prediction of the saddle point analysis. By considering
the differential equations for the sharp peak case at zeroth-
order in �, we find that the class distributions satisfy
e−�/2�k�rk /N�Pk

�0� /2k= fm
�0��lPl

�0� /2l with P0
�0�= �Ae−�

−A0� / �A−A0� and fm
�0�=AP0

�0�+A0�1− P0
�0��=Ae−�. Thus we

find S=�lPl
�0� /2l= �A−A0�P0

�0�e−�/2 / �fm
�0�−A0e−�/2�= �Ae−�

−A0�e−�/2 / �Ae−�−A0e−�/2�. Thus, we find the recombination
term �k�rk /N�Pk

�0� /2k�lPl
�0� /2l=Ae−�/2S2. Hence, we find

that at first order in �, the fraction of the population located
at the peak is given by

P0 =
Ae−� − A0

A − A0
− �e−�� A

A − A0
− Ae−�/2 Ae−� − A0

�Ae−�/2 − A0�2�
+ O��2� . �112�

We note that this value of fm=AP0+A0�1− P0� interpolates
between fm

�1� for Ae−� /A0=1 and a value intermediate to fm
�1�

and fm
�2� for Ae−� /A0=�.

As a second example, we consider the quadratic fitness
f�u�=ku2 /2+k0. By maximizing expressions �107� �59� and
�106�, we obtain two selective phases S1 and S2, and a non-
selective phase NS, defined by the equations

S1: u = �2�1 − ��e−��1−�1−�c
2���c

2/2 + k0/k� − 2k0/k�1/2,

� � min��*,�c� ,

TABLE XII. Analytical results for two-parent recombination in
the Eigen model for the square-root fitness f�u�=k��u�+1.

k /� � /� uanalytic

4.0 0.0 0.3493

4.0 0.1 0.3892

4.0 0.2 0.3892

4.0 0.5 0.3892

3.0 0.0 0.3346

3.0 0.1 0.3892

3.0 0.2 0.3892

3.0 0.5 0.3892
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S2: u = �1 − 2�k0/k
1 + �

�1/2

, �c � �* � � ,

NS: u = 0, otherwise, �113�

where in the S1 phase

�c
2 = 2��1 + �2�1 + 2k0/k� − 1 − �2k0/k�/�2 �114�

and we have defined

�c = 1 −
k0

k
e��1−�1−�c

2�/��c
2/2 + k0/k� ,

�* = 1 −
k + 2k0

2k�1 + ��
e��1−�1−�c

2�/��c
2/2 + k0/k� , �115�

where �c
2 is given by Eq. �114�. The phase structure is defined

by the conditions: For 2�k0 /k�1, the system is in S1 if �
��c, or in NS if ���c; for 2�k0 /k�1, the system is in S1
if ���*, or in S2 if ���*. From Eq. �115�, we notice that at
2�k0 /k=1, �c=�*.

We note that the phase transition between case 1 and case
2 is exactly as predicted by Eq. �109�. We further note that
the mean fitness is independent of � for ���*, exactly as
predicted by Eq. �110�.

As a final example, we consider the square-root fitness
f�u�=k��u�+1. By maximizing expressions �107� �59� and
�106� for the square-root fitness landscape, we obtain the
results presented in Table XII

From the results displayed in Table XII, we observe a
similar qualitative behavior as in the two-parent recombina-
tion for the parallel case, Table IX. In the square-root fitness,
recombination introduces a favorable effect over selection,
which can be attributed to negative epistasis �see Fig. 1�
according to the mutational deterministic hypothesis
�7,10–12�, as shown in Appendix O. Spectral rigidity is also
observed in this case when ��0.

IV. CONCLUSION

We have generalized two classical models of evolutionary
biology, the Crow-Kimura model and Eigen models. We
have introduced interindividual transfer of genetic informa-
tion to these models, bringing them closer to the modern
understanding of evolutionary biology. For both models, we
showed how to incorporate horizontal gene transfer. We
showed that these generalized models may be written in an
equivalent field-theoretic formulation. This mapping allows
us to apply the powerful mathematical techniques of quan-
tum field theory to obtain exact analytical solutions. For fit-
ness landscapes that depend only on distance from a wild-
type genome and for long genome lengths, we are able to
solve for the mean population fitness for arbitrary functional

forms of the fitness. Horizontal gene transfer of M̄ genetic
units was shown to be analogous to horizontal gene transfer
of one genetic unit, with a suitably scaled horizontal gene
transfer rate.

We also showed how to incorporate recombination to
these classical models, as might occur in viral super infection

or coinfection. This case seems at first glance far more non-
linear, since on average half of the genetic material is taken
from each parent to make the child, rather than O�1� genes as
in horizontal gene transfer. Somewhat surprisingly, we were
able to exactly solve the two-parent recombination case for
both the Eigen model and Crow-Kimura model as well. In
the limit of a long genome and for fitness landscapes that
depend on the distance from a wild-type genome, we find
that the mean population fitness is independent of the aver-
age crossover length in the recombination process. We also
find two selected phases. The phase for large recombination
rates is spectrally rigid, with the mean fitness and population
distribution independent of the rate of recombination.

We proved the mutational deterministic hypothesis holds
for horizontal gene transfer or recombination in both the par-
allel �Kimura� model and Eigen model. That is, horizontal
gene transfer and recombination reduce the mean fitness in
the presence of positive epistasis and increase the fitness in
the presence of negative epistasis �see Fig. 1 and Appendices
L–O�.

For a discontinuous, sharp peak fitness landscape, we
found that horizontal gene transfer does not affect the struc-
ture of the quasispecies distribution or the error threshold
transition. For the sharp peak fitness function, the only ap-
preciable effect of horizontal gene transfer is related to the
potential emergence of metastability depending on the initial
conditions, and we analytically determined the region of pa-
rameters space in which this situation may occur. On the
other hand, even for the sharp peak fitness function, two-
parent recombination induces enough mixing to enhance di-
versity in systems evolving under a sharp peak replication
rate, thus changing the quasi-species distribution and shifting
the error threshold transition. We found explicit analytical
expressions for this shift.

For smooth fitness landscapes, these genetic transfers af-
fect the steady-state population distribution and mean fitness.
Recombination and horizontal gene transfer may, of course,
dramatically change the dynamics of the evolution process as
well. The most dramatic impact of these exchanges of ge-
netic material is expected for fitness landscapes that have a
correlated, biological structure that is conjugate to these ex-
changes �60�. Analytic investigation of such correlated fit-
ness landscapes is perhaps one of the next steps in the de-
velopment of modern theories of evolution.
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APPENDIX A

We consider Eq. �9� for horizontal gene transfer of blocks

of fixed length M̄ in the parallel model. For �= t /M and M
→�, we have

�z�k�e−�Ĥ�z�k−1� � �z�k�z�k−1� − ��z�k�Ĥ�z�k−1�

� �z�k�z�k−1�e−���z�k�Ĥ�z�k−1�/�z�k�z�k−1��. �A1�

For the Hamiltonian matrix elements in the coherent states
basis, we obtain to order O�N0�
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−
�z�k�Ĥ�z�k−1�
�z�k�z�k−1�

= Nf� 1

N
�
j=1

N

z�
k
*�j��3z�k−1�j��

+ ��
j=1

N

�z�
k
*�j��1z�k−1�j� − 1�

+ � �
b=0

N/M̄−1� �
jb=M̄b+1

M̄�b+1�

z�
k
*�jb�Dz�k−1�jb� − 1� .

�A2�

We introduce the auxiliary field

�k =
1

N
�
j=1

N

z�
k
*�j��3z�k−1�j� �A3�

and the conjugate field �̄k to enforce the constraint via a
Laplace representations of the delta function. Substituting
into Eq. �A2� into Eq. �9�, we obtain

e−Ĥt = lim
M→�

� �Dz�*Dz�� � ��
k=0

M
i�Nd�̄kd�k

2�
��z�M��z�0�


 exp��k=1

M � j=1

N

− �1/2��z�

k
*�j� · z�k�j�

+ z�
k−1
* �j� · z�k−1�j� − 2z�

k
*�j� · z�k−1�j�� + ��z�

k
*�j���̄k�3

+ ��1�z�k−1�j���� 
 exp�− �N�k=1

M
��̄k�k + � + �/M̄

− f��k� − ��/N��b=0
N/M̄−1 �

jb=M̄b+1

M̄�b+1� z�
k
*�jb�Dz�k−1�jb��� .

�A4�

The contribution of the interaction term
�
N�b=0

N/M̄−1�
jb=M̄b+1

M̄�b+1�
z�

k
*�jb�Dz�k−1�jb� to the partition function can

be treated to arbitrary order in perturbation theory using the
formula Z=Z0�e−
S�0, and its contribution shown to be site-
independent. Moreover, this reference perturbation theory
has O�N−1� fluctuations. Thus, it can be shown that with an

error O�M̄ /N� at all orders in perturbation theory, we obtain
the same partition function when substituting this interaction

term by �

M̄
��1 /N�� j=1

N z�
k
*�j�Dz�k−1�j��M̄. Therefore, we define

the auxiliary field

�k =
1

N
�
j=1

N

z�
k
*�j�Dz�k−1�j� . �A5�

We obtain the partition function from the trace of the evolu-
tion operator �A4� projected onto physical states �33�

Z = Tr�e−ĤtP̂�

= �
0

2� ��
j=1

N
d� j

2�
e−i�j� lim

M→�
� ��

k=0

M

Dz�
k
*Dz�k�


�e−S�z�*,z���z�0=ei�z�M
. �A6�

By inserting Eq. �A5�, we obtain

Z = lim
M→�

� �D�̄D�D�̄D��exp�− N��k=1

M
��̄k�k + �̄k�k

− f��k� + � + �/M̄ − ��/M̄��k
M̄��


 �
0

2� ��
j=1

N
d� j

2�
e−i�j� � ��

k=0

M

Dz�
k
*Dz�k��


exp�− � j=1

N �k,l=1

M
z�

k
*�j�Skl�j�z�l�j���z�M=ei�z�0

. �A7�

The matrix S�j� in Eq. �A7� is defined by

S�j� =�
I 0 0 . . . − ei�jA1

− A2 I 0 . . . 0

0 − A3 I . . . 0

] . . . . . . . . . 0

0 . . . 0 − AM I
� . �A8�

Here Ak= I+���̄k�3+��1+ �̄kD�.
After calculating the Gaussian integral over the coherent

state fields, we obtain

lim
M→�

�
0

2� ��
j=1

N
d� j

2�
e−i�j� � ��

k=0

M

Dz�
k
*Dz�k�


exp�− � j=1

N �k,l=1

M
z�

k
*�j�Skl�j�z�l�j��

= lim
M→�

�
0

2�

�
j=1

N
d� j

2�
e−i�j�det S�j��−1

= lim
M→�

�
0

2�

�
j=1

N
d� j

2�
e−i�j


exp�−Tr ln�I−ei� jT̂exp���k=1
M �̄k�3+��1+�̄kD���

= lim
M→�

�
j=1

N

TrT̂exp���k=1
M ��̄k�3+��1+�̄kD�� = QN, �A9�

where T̂ is the time ordering operator and

Q = TrT̂exp��
0

t

dt���̄�3 + ��1 + �̄D�� . �A10�

With this result the partition function in Eq. �A7� becomes
Eq. �10�.

APPENDIX B

From Eq. �13�, we obtain the saddle-point equations with

respect to the fields �̄c , �̄c for horizontal gene transfer of

blocks of fixed length M̄ in the parallel model





�̄c

�− Sc

Nt
	 = − �c +

2�̄c + u�̄c

2��̄c��̄c + u�̄c� + �� +
�̄c

2
	2�1/2 = 0,

�B1�
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�̄c

�− Sc

Nt
	 = − �c +

1

2
+

u�̄c + � +
�̄c

2

2��̄c��̄c + u�̄c� + �� +
�̄c

2
	2�1/2

= 0. �B2�

Then, the system of Eqs. �B1� and �B2� reduces to

�c =

�̄c +
u

2
�̄c

��̄c��̄c + u�̄c� + �� +
�̄c

2
	2�1/2 , �B3�

�c −
1

2
=

u�̄c + � +
�̄c

2

2��̄c��̄c + u�̄c� + �� +
�̄c

2
	2�1/2 . �B4�

We eliminate �̄c , �̄c, to obtain

− Sc

Nt
= max

�c,�c
� f��c� − � −

�

M̄
+

�

M̄
�c

M̄ +
�

1 − u2 �2�c − 1 − u�c�

−
��u�

1 − u2 ��2�c − 1 − u�c�2 − �1 − u2��1 − �c
2��1/2� .

�B5�

Finally, we look for an extremum in �c,





�c
�− Sc

Nt
	 =

�

M̄
M̄�c

M̄−1 +
2�

1 − u2 −
��u�

1 − u2



2�2�c − 1 − u�c�

��2�c − 1 − u�c�2 − �1 − u2��1 − �c
2��1/2 = 0.

�B6�

We solve for �c as a function of �c from this equation

�c��c� =
1 + u�c

2
+

�1 − �c
2

2

�1 − u2

�1 − � u

1 +
�

2�
�1 − u2��c

M̄−1�
2

�
1/2

.

�B7�

Substituting into Eq. �B5�, we obtain for the mean fitness or
average replication rate Eq. �14�.

APPENDIX C

We consider Eq. �28� for horizontal gene transfer of
blocks of variable length in the parallel model. For �= t /M
and M→�, we have

�z�k�e−�Ĥ�z�k−1� � �z�k�z�k−1� − ��z�k�Ĥ�z�k−1�

� �z�k�z�k−1�e−��z�k�Ĥ�z�k−1�/�z�k�z�k−1�. �C1�

For the Hamiltonian matrix elements in the coherent states
basis, we obtain

−
�z�k�Ĥ�z�k−1�
�z�k�z�k−1�

= Nf� 1

N
�
j=1

N

z�
k
*�j��3z�k−1�j��

+ ��
j=1

N

�z�
k
*�j��1z�k−1�j� − 1� +

�

�M̄�
Nexp�− �M̄�

+ ��M̄�/N�� j=1

N
z�

k
*�j�Dz�k−1�j�� −

�

�M̄�
N . �C2�

We introduce the fields

�k =
1

N
�
j=1

N

z�
k
*�j��3z�k−1�j� , �C3�

�k =
1

N
�
j=1

N

z�
k
*�j�Dz�k−1�j� �C4�

and the conjugate fields �̄k and �̄k to enforce the constraints
via Laplace representations of the Dirac delta functions. Sub-
stituting into Eq. �28�, we obtain

e−Ĥt = lim
M→�

� �Dz�*Dz�� � ��
k=1

M
i�Nd�̄kd�k

2�

i�Nd�̄kd�k

2�
��z�M�


�z�0�exp��k=1

M � j=1

N

− �1/2��z�

k
*�j� · z�k�j�

+ z�
k−1
* �j� · z�k−1�j� − 2z�

k
*�j� · z�k−1�j�� + ��z�

k
*�j���̄k�3

+ ��1 + �̄kD�z�k−1�j���� 
 exp�− �N�k=1

M
��̄k�k + �̄k�k

+ � + �/�M̄� − f��k� − ��/�M̄��e−�M̄��1−�k��� . �C5�

We obtain the partition function from the trace of the evolu-
tion operator �C5�

Z = Tr�e−ĤtP̂� = �
0

2� ��
j=1

N
d� j

2�
e−i�j� lim

M→�
� ��

k=1

M

Dz�
k
*Dz�k�


�e−S�z�*,z���z�0=ei�z�M
. �C6�

By inserting Eq. �C5�, we obtain

Z = lim
M→�

� �D�̄D�D�̄D��exp�− N��k=1

M
��̄k�k + �̄k�k

− f��k� + � + �/�M̄� − ��/�M̄��exp�− �M̄��1 − �k����


 �
0

2� ��
j=1

N
d� j

2�
e−i�j� � ��

k=1

M

Dz�
k
*Dz�k�


�e−�j=1
N �k,l=1

M z�
k
*�j�Skl�j�z�l�j��z�M=ei�z�0

. �C7�

The matrix S�j� in Eq. �C7� is defined by
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S�j� =�
I 0 0 . . . − ei�jA1

− A2 I 0 . . . 0

0 − A3 I . . . 0

] . . . . . . . . . 0

0 . . . 0 − AM I
� , �C8�

where Ak= I+���̄k�3+��1+ �̄kD�.
After calculating the Gaussian integral over the coherent

state fields, we obtain

lim
M→�

�
0

2�

�
j=1

N
d� j

2�
e−i�j� ��

k=1

M

Dz�
k
*Dz�k�exp�− � j=1

N �k,l=1

M
z�

k
*�j�Skl�j�z�l�j��

= lim
M→�

�
0

2�

�
j=1

N
d� j

2�
e−i�j�det S�j��−1

= lim
M→�

�
0

2�

�
j=1

N
d� j

2�
e−i�jexp�− Tr ln�I − ei�jT̂ exp���k=1

M
�̄k�3 + ��1 + �̄kD���

= lim
M→�

�
j=1

N

TrT̂exp���k=1

M
��̄k�3 + ��1 + �̄kD�� = QN, �C9�

where

Q = TrT̂e��0
t dt���̄�3+��1+�̄D��. �C10�

With this result, in the limit M→�, the partition function in
Eq. �C7� becomes Eq. �29�.

APPENDIX D

We consider recombination in the parallel model. For the
Hamiltonian matrix elements in the coherent states basis, we
obtain to order O�N0�

−
�z�k�Ĥ�z�k−1�
�z�k�z�k−1�

= Nf� 1

N
�
j=1

N

z�
k
*�j��3z�k−1�j��

+ ��
j=1

N

�z�
k
*�j��1z�k−1�j� − 1�

+ �N„g�
z�
k
*�j�Dj

lz�k−1�j��� − 1… , �D1�

where the matrices Dj
l are defined by Eq. �38�. We introduce

the auxiliary fields

�k =
1

N
�
j=1

N

z�
k
*�j��3z�k−1�j� �D2�

and the conjugate fields �̄k to enforce the constraints via a
Laplace representations of the delta functions. Substituting
into Eq. �40�, we obtain

e−Ĥt = lim
M→�

� �Dz�*Dz�� � ��
k=1

M
i�Nd�̄kd�k

2�
��z�M��z�0�


 exp��
k=1

M

�
j=1

N


− �1/2��z�
k
*�j� · z�k�j� + z�

k−1
* �j� · z�k−1�j�

− 2z�
k
*�j� · z�k−1�j�� + �N�z�

k
*�j���̄k�3 + ��1�z�k−1�j����


 exp�− ��
k=1

M

„�̄k�k + � + � − f��k�

− �g�
z�
k
*�j�Dj

lz�k−1�j���…� . �D3�

We obtain the partition function from the trace of the evolu-
tion operator �D3�, for recombination in the parallel model

Z = Tr�e−ĤtP̂� = �
0

2� ��
j=1

N
d� j

2�
e−i�j� lim

M→�
� ��

k=1

M

Dz�
k
*Dz�k�


�e−S�z�*,z���z�0=ei�z�M
. �D4�

It is convenient to define the auxiliary field

�k =
1

N
�
j=1

N

z�
k
*�j�Dz�k�j� �D5�

and the corresponding �̄k to enforce the constraint by a
Laplace representation of the Dirac delta function. From Eq.
�D4�, we have
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Z = lim
M→�

� �D�̄D�D�̄D��exp�− N��
k=1

M

��̄k�k + �̄k�k − f��k�

+ � + � − �g��k���


 �
0

2� ��
j=1

N
d� j

2�
e−i�j� � ��

k=1

M

Dz�
k
*Dz�k� 


exp�− �
j=1

N

�
k,l=1

M

z�
k
*�j�Skl�j�z�l�j�� 

z�M=ei�z�0

. �D6�

Here, for large N the function g��� has the singular behavior

g���=0 unless �=1−O�1 /N�. We also notice g�1�=1. The
matrix S�j� in Eq. �D6� is defined by

S�j� =�
I 0 0 . . . − ei�jA1

− A2 I 0 . . . 0

0 − A3 I . . . 0

] . . . . . . . . . 0

0 . . . 0 − AM I
� . �D7�

Here, Ak= I+���̄k�3+��1+ �̄kD�. After calculating the
Gaussian integral over the coherent states fields, we obtain

lim
M→�

�
0

2� ��
j=1

N
d� j

2�
e−i�j� � ��

k=1

M

Dz�
k
*Dz�k�exp�− �

j=1

N

�
k,l=1

M

z�
k
*�j�Skl�j�z�l�j�� = lim

M→�
�

0

2�

�
j=1

N
d� j

2�
e−i�j�det S�j��−1

= lim
M→�

�
0

2�

�
j=1

N
d� j

2�
e−i�j


exp�− Tr ln�I − ei�jT̂ exp���
k=1

M

�̄k�3 + ��1 + �̄kD	�� = lim
M→�

�
j=1

N

TrT̂e� �
k=1

M
��̄k�3+��1+�̄kD� = QN, �D8�

where in the continuous limit

Q = TrT̂exp��
0

t

dt���̄�3 + ��1 + �̄D�� . �D9�

With this result, the partition function in Eq. �D6� becomes
Eq. �59�.

APPENDIX E: THE RECOMBINATION OPERATOR

For the recombination process, we consider that in the
first step, the polymerase enzyme starts the copying path in
either of both parental chains with equal probability 1 /2.
Then, at each site, it can jump to the other chain with prob-
ability 0� pc�1 /2 or continue along the same chain with
probability 1− pc.

As presented in Sec. II C, this process is represented in
the general differential Eq. �1� by the coefficients in Eq. �35�

Rkl
i =

1

2 �

�j=	1�

�1 + s1
ks1

i

2
	�1+�1�/2�1 + s1

l s1
i

2
	�1−�1�/2

��1 − pc��1+�1�2�/2pc
�1−�1�2�/2��1 + s2

ks2
i

2
	�1+�2�/2�1 + s2

l s2
i

2
	�1−�2�/2


 ��1 − pc��1+�2�3�/2pc
�1−�2�3�/2��1 + s3

ks3
i

2
	�1+�3�/2�1 + s3

l s3
i

2
	�1−�3�/2


 . . . 
 ��1 − pc��1+�N−1�N�/2pc
�1−�N−1�N�/2�


�1 + sN
k sN

i

2
	�1+�N�/2�1 + sN

l sN
i

2
	�1−�N�/2

. �E1�

The operator for this process in the Schwinger-boson representation is presented in Eq. �37�

R̂ =
1

2�
l=1

2N

pl �

�i=	1�

�Î1
�1+�1�/2R̂l�1��1−�1�/2���1 − pc��1+�1�2�/2pc

�1−�1�2�/2��Î2
�1+�2�/2R̂l�2��1−�2�/2���1 − pc��1+�2�3�/2pc

�1−�2�3�/2�


�Î3
�1+�3�/2R̂l�3��1−�3�/2� 
 . . . 
 ��1 − pc��1+�N−1�N�/2pc

�1−�N−1�N�/2� 
 �ÎN
�1+�N�/2R̂l�N��1−�N�/2� − Î � g�
R̂l�j��� − Î .

�E2�
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Here, we define the single-site recombination operator as

R̂l�j�= â�†�j�Dj
lâ��j�, with

Dj
l =�

1 + sj
l

2

1 + sj
l

2

1 − sj
l

2

1 − sj
l

2
� �E3�

and pl=ql /�l=1
2N

ql is the normalized probability for sequence
1� l�2N.

It is possible to group the different terms in the form of
Ising-like traces, by using the definition J=−�1 /2�ln�pc / �1
− pc��,

g�
R̂l�j��� =
1

2
�2 cosh�J��−�N−1��

l=1

2N

pl �

�j=	1�

eJ �
j=2

N
�j�j−1


�
j=1

N �1 + � j

2
Î j +

1 − � j

2
R̂l�j�� . �E4�

After the representation in terms of coherent states fields, we

have R̂l�j�→z�
k
*�j�Dj

lz�k−1�j��� j
l, and correspondingly g

→g�
� j
l��

g�
� j
l�� =

1

2
�2 cosh�J��−�N−1��

l=1

2N

pl �

�j=	1�

eJ �
j=2

N
�j�j−1�

j=1

N


�1 + � j

2
+

1 − � j

2
� j

l� . �E5�

It is convenient to reorganize this expression as

g�
� j
l�� =

1

2
�2 cosh�J��−�N−1��

l=1

2N

pl�
i=1

N


�1 + �i
l

2
	 �


�j=	1�
eJ �

j=2

N
�j�j−1�

k=1

N �1 + �k

1 − �k
l

1 + �k
l � .

�E6�

We define the transfer matrix

T = � eJ e−J

e−J eJ 	 �E7�

with eigenvalues �+=2 cosh�J� and �−=2 sinh�J�.
The Ising trace in Eq. �E6� is given by

�

�j=	1�

eJ �
j=2

N
�j�j−1 = �


�1=	1�
���1�TN−1��1� + ��1�TN−1�− �1��

= Tr�TN−1� + Tr�TN−1�1�

= �+
N−1 + �−

N−1 + �+N−1 − �−
N−1 = 2�+

N−1

= 2�2 cosh�J��N−1. �E8�

By considering this formula, and expanding the product in
Eq. �E6�, we obtain

g�
� j
l�� = �

l=1

2N

pl�
j=1

N �1 + � j
l

2
	�1 + �

k=1

N

��k�
1 − �k

l

1 + �k
l

+ �
1�k�m

N

��k�m�
1 − �k

l

1 + �k
l

1 − �m
l

1 + �m
l

+ �
1�k�m�n

��k�m�n�
1 − �k

l

1 + �k
l

1 − �m
l

1 + �m
l

1 − �n
l

1 + �n
l + ¯

+ ��1�2 ¯ �N��
k=1

N
1 − �k

l

1 + �k
l � . �E9�

In this notation, we defined the averages

��k�l ¯ � �
1

2�+
N−1 �


�j=	1�
eJ �

j=2

N
�j�j−1�k�l ¯ . �E10�

We present the first and second order averages, to illustrate
the general technique to obtain the higher orders.

The first order average is

��k� =
1

2�+
N−1 �

�j=	1
eJ �

j=2

N
�j�j−1�k

=
1

2�+
N−1Tr��1 1

1 1
	Tk−1�3TN−k�

=
1

2�+
N−1Tr�P−1�1 1

1 1
	PP−1Tk−1PP−1�3PP−1TN−kP� .

�E11�

To evaluate the trace, we introduced the matrix P which
diagonalizes the transfer matrix T

P =
1
�2

� 1 1

− 1 1
	 . �E12�

We use the identities

P−1TP = ��− 0

0 �+
	, P−1�1 1

1 1
	P = �0 0

0 2
	, P−1�3P

= �1. �E13�

Substituting into Eq. �E11�, we obtain

��k� =
1

�+
N−1Tr��0 0

0 1
	��−

k−1 0

0 �+
k−1 	�1��−

N−k 0

0 �+
N−k 	� = 0,

�E14�

a result we expect due to the symmetry of the Hamiltonian in
Eq. �E11�. Following a similar procedure, we can express the
second order correlation in the form
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��k�m� =
1

2�+
N−1Tr��1 1

1 1
	Tk−1�3Tm−k�3TN−m�

=
1

�+
N−1Tr��0 0

0 1
	��−

k−1 0

0 �+
k−1 	�1��−

m−k 0

0 �+
m−k 	�1


��−
N−m 0

0 �+
N−m 	� =

�+
k−1+N−m�−

m−k

�+
N−1 = ��−

�+
	m−k

= �tanh�J��m−k = �1 − 2pc�m−k. �E15�

From the same analysis, we prove that the correlations for
an odd number of � ’s vanish, whereas those for an even
number become

��k�l�m�n ¯ � = ��−

�+
	l−k+n−m+¯

= �tanh�J��l−k+n−m+¯

= �1 − 2pc�l−k+n−m+¯. �E16�

Substituting into Eq. �E9�, we obtain the finite series repre-
sentation

g�
� j
l�� = �

l=1

2N

pl�
j=1

N �1 + � j
l

2
	�1 + �

1�k�m

N


�1 − 2pc�m−k1 − �k
l

1 + �k
l

1 − �m
l

1 + �m
l + �

1�k�m�n�q

N


�1 − 2pc�m−k+q−n1 − �k
l

1 + �k
l

1 − �m
l

1 + �m
l

1 − �n
l

1 + �n
l

1 − �q
l

1 + �q
l + ¯

+ �1 − 2pc���N−1�/2��
k=1

N �1 − �k
l

1 + �k
l 	� . �E17�

Finally, we can obtain the alternative representation

g�
� j
l�� = �

l=1

2N

pl��
j=1

N �1 + � j
l

2
	 + �

1�k�m


�1 − 2pc�m−k1 − �k
l

2

1 − �m
l

2 �
j�k,l

1 + � j
l

2

+ �
1�k�m�n�q

N

�1 − 2pc�m−k+q−n1 − �k
l

2



1 − �m

l

2

1 − �n
l

2

1 − �q
l

2

 �

j�k,m,n,q

N
1 + � j

l

2
+ ¯

+ �1 − 2pc��N/2��
j=1

N
1 − � j

l

2 � . �E18�

APPENDIX F

For the case of uniform crossover recombination, pc
=1 /2, a simplified analysis can be carried out to obtain the
large N, or Gaussian limit, of the recombination coefficients
Ru1,u2

u , because permutation symmetry is exactly obeyed. For
the child sequence created from parental sequences with

number of “+1” sites as n1 and n2, the number of child se-
quences, n, with “+1” sites is given by the expression

n = �
i=1

N �1 + �i

2

1 + si
1

2
+

1 − �i

2

1 + si
2

2
	 . �F1�

Here, the path followed by the polymerase while copying
from either parental sequence, is parametrized by the random
variables �i= 	1, with ��i�=0 and ��i� j�=
ij. From Eq.
�F1�, we obtain the corresponding expression for the average
composition of the child sequence, u= �N−2n� /N

u =
1

N
�
i=1

N �1 + �i

2
si

1 +
1 − �i

2
si

2	 . �F2�

From Eq. �F2�, we obtain the average

�u�� =
1

N
�
i=1

N
si

1 + si
2

2
=

u1 + u2

2
. �F3�

To obtain the variance, we calculate

�u2�� =
1

N2 �
i,j=1

N ��1 + �i

2
si

1 +
1 − �i

2
si

2	

�1 + � j

2
sj

1 +
1 − � j

2
sj

2	

�

=
1

4N2 �
i,j=1

N2

�si
1 + si

2��sj
1

+ sj
2� +

1

4N2�
i=1

N

���isi
1 − �isi

2�2�� = �u��
2 +

1

4N2


�
i=1

N

��si
1 − si

2�2� . �F4�

Therefore, we obtain the variance as

��
u�2�� =
1

4N2N 
 4 
 2
1 + u

2

1 − u

2
=

1 − u2

2N
. �F5�

Hence, in the large N Gaussian limit, the recombination co-
efficients are given by the distribution

Ru1,u2

u �
e−N��u1 + u2�/2 − u�2/�1−u

*
2 �

���1 − u*
2 �/N

, �F6�

where fm= f�u*�. For pc�1 /2, making the ansatz that corre-
lations between spins at different sites remain O�N−1�, the
additional contributions to ��
u�2�� is

1

4N2�
i�j

�1 − 2pc��1−u��si
1 − si

2��s j
1 − s j

2�

=
1

2N2 �
k�0

�
i

�1 − 2pc�k�si
1 − si

2��si+k
1 − si+k

2 �

�
1

2N
�
k�0

�1 − 2pc�k��s1 − s2�2 + O�1/N��

�
1

�4pcN�
�O�1/�N�2 + O�1/N�� � const/N2, �F7�
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and the large N limit becomes that of the pc=1 /2 case.

APPENDIX G

We consider the saddle point condition for recombination
in the parallel model. First, we look for the saddle-point

condition with respect to the fields �̄c , �̄c





�̄c

�− Sc

Nt
	 = − �c +

2�̄c + u�̄c

2��̄c��̄c + u�̄c� + �� +
�̄c

2
	2�1/2 = 0,

�G1�





�̄c

�− Sc

Nt
	 = − �c +

1

2
+

u�̄c + � +
�̄c

2

2��̄c��̄c + u�̄c� + �� +
�̄c

2
	2�1/2

= 0. �G2�

Equations �G1� and �G2� become

�c =
2�̄c + u�̄c

2��̄c��̄c + u�̄c� + �� +
�̄c

2
	2�1/2 , �G3�

�c =
1

2
+

u�̄c + � +
�̄c

2

2��̄c��̄c + u�̄c� + �� +
�̄c

2
	2�1/2 . �G4�

By combining Eqs. �G3� and �G4�, with the saddle-point
action �58�, we obtain Eq. �59�.

APPENDIX H

We consider horizontal gene transfer of blocks of length
M in the Eigen model. The matrix elements of the Hamil-
tonian in the basis of coherent states are given by

−
�z�k�Ĥ�z�k−1�
�z�k�z�k−1�

= N exp�− � + ��/N�� j=1

N
z�

k
*�j��1z�k−1�j��exp�− �/M̄

+ ��/N��b=0
N/M̄−1 �

jb=M̄b+1

M̄�b+1� z�
k
*�jb�Dz�k−1�jb��


f� 1

N
�
j=1

N

z�
k
*�j��3z�k−1�j�� − Nd� 1

N
�
j=1

N

z�
k
*�j��3z�k−1�j�� .

�H1�

We introduce the auxiliary fields

�k =
1

N
�
j=1

N

z�
k
*�j��3z�k−1�j� , �H2�

�k =
1

N
�
j=1

N

z�
k
*�j��1z�k−1�j� , �H3�

and the corresponding conjugate fields �̄k , �̄k to enforce the
constraints via Laplace representations of the Dirac delta
functions. Therefore, Eq. �77� becomes

e−Ĥt = lim
M→�

� �Dz�*Dz���z�M�


�z�0� � ��
k=1

M
i�Nd�̄kd�k

2�

i�Nd�̄kd�k

2�
�


 exp�− �1/2��k=1

M
�z�

k
*�j� · z�k�j� + z�

k−1
* �j� · z�k−1�j�

− 2z�
k
*�j� · z�k−1�j���exp���k=1

M � j=1

N
z�

k
*�j���̄k�3

+ �̄k�1�z�k−1�j��exp�− �N�k=1

M
��̄k�k + �̄k�k��


 exp��N�k=1

M
�exp�− ��1 − �k� − �/M̄

+ ��/N��b=0
N/M̄−1 �

jb=M̄b+1

M̄�b+1� z�
k
*�jb�Dz�k−1�jb��f��k�

− d��k��� . �H4�

At this point, a perturbation theory analysis similar to the
case of the horizontal gene transfer of finite blocks in the
Kimura model leads us to conclude that to within error

O�M̄ /N� at each order in perturbation theory, it is possible to
substitute the recombination term by

�

M̄
� 1

N
�
j=1

N

z�
k
*�j�Dz�k−1�j�	M̄

. �H5�

Then, it is convenient to introduce the auxiliary field

�k =
1

N
�
j=1

N

z�
k
*�j�Dz�k−1�j� �H6�

and the corresponding �̄k field to enforce the constraint
through a Laplace representation of the Dirac delta function.
The partition function is obtained from the trace of the evo-
lution operator in Eq. �H4�

Z = Tr�e−ĤtP̂� = �
0

2� ��
j=1

N
d� j

2�
e−i�j� lim

M→�
� ��

k=0

M

Dz�
k
*Dz�k�


�exp�− S�z�*,z����z�0=ei�z�M
. �H7�

Thus, we obtain

Z = lim
M→�

� �D�̄D�D�̄D�D�̄D��


exp�− �N�k=1

M
��̄k�k + �̄k�k + �̄k�k��


exp��N�k=1

M
�exp�− ��1 − �k� − �/M̄

+ ��/M̄��k
M̄�f��� − d�����
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�
0

2� �d� j

2�
e−i�j� � ��

k=1

M

Dz�
k
*Dz�k�


�exp�− � j=1

N �k,l=1

M
z�

k
*�j�Skl�j�z�l�j���z�M=ei� jz�0

.

�H8�

The matrix S�j� in Eq. �H8� is defined by

S�j� =�
I 0 0 . . . − ei�jA1

− A2 I 0 . . . 0

0 − A3 I . . . 0

] . . . . . . . . . 0

0 . . . 0 − AM I
� . �H9�

Here Ak= I+���̄k�3+ �̄k�1+ �̄kD�.
After calculating the Gaussian integral over the coherent

states fields, we obtain

lim
M→�

�
0

2� ��
j=1

N
d� j

2�
�e−i�j� ��

k=1

M

Dz�
k
*Dz�k�


exp�− � j=1

N �k=1

M
z�

k
*�j�Skl�j�z�l�j��

= lim
M→�

�
0

2�

�
j=1

N
d� j

2�
e−i�j�det S�j��−1

= lim
M→�

�
0

2�

�
j=1

N
d� j

2�
e−i�jexp�− Tr ln�I

− ei�jT̂ exp���k=1

M
�̄k�3 + �̄k�1 + �̄kD���

= lim
M→�

�
j=1

N

TrT̂exp���k=1

M
��̄k�3 + �̄k�1 + �̄kD�� = QN,

�H10�

where

Q = TrT̂exp��
0

t

dt���̄�3 + �̄�1 + �̄D�� . �H11�

With this result the partition function in Eq. �H8� becomes
Eq. �78�.

APPENDIX I

We consider the saddle-point equations for horizontal
gene transfer of blocks of length M in the Eigen model:





�̄c

�− Sc

Nt
	 = − �c +

�̄c +
u

2
�̄c

��̄c��̄c + u�̄c� + ��̄c +
�̄c

2
	2�1/2 = 0,

�I1�





�̄c

�− Sc

Nt
	 = − �c +

1

2
+

u�̄c + �̄c +
�̄c

2

2��̄c��̄c + u�̄c� + ��̄c +
�̄c

2
	2�1/2

= 0, �I2�





�c
�− Sc

Nt
	 = − �̄c + ��c

M̄−1exp�− ��1 − �c� − �/M̄

+ ��/M̄��c
M̄−1�f��c� = 0, �I3�





�̄c
�− Sc

Nt
	 = − �c +

�̄c +
�̄c

2

2��̄c��̄c + u�̄c� + ��̄c +
�̄c

2
	2�1/2 = 0,

�I4�





�c
�− Sc

Nt
	 = − �̄c + �exp�− ��1 − �c� − �/M̄

+ ��/M̄��c
M̄�f��c� = 0. �I5�

We obtain the following identities:

�c =
�̄c + u�̄c/2

��̄c��̄c + u�̄c� + ��̄c + �̄c/2�2�1/2
, �I6�

�c =
�̄c + �̄c/2

��̄c��̄c + u�̄c� + ��̄c + �̄c/2�2�1/2
, �I7�

�̄c = �exp�− ��1 − �c� − ��/M̄��1 − �c
M̄��f��c� , �I8�

�c =
1

2
+

1

2

u�̄c + �̄c + �̄c/2

��̄c��̄c + u�̄c� + ��̄c + �̄c/2�2�1/2
, �I9�

�̄c = ��c
M̄−1exp�− ��1 − �c� − ��/M̄��1 − �c��f��c� .

�I10�

Combining Eqs. �I8� and �I10�, we obtain

��̄c�c
M̄−1 = ��̄c. �I11�

From the system of Eqs. �I6�–�I11�, it can be shown that

− �̄c�c − �̄c�c − �̄c�c +
ln Qc

t
= 0. �I12�

APPENDIX J

We consider horizontal gene transfer of blocks of variable
length in the Eigen model. The Hamiltonian matrix elements
in the coherent states basis are given, to O�N−1�, by
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−
�z�k�Ĥ�z�k−1�
�z�k�z�k−1�

= Nexp�− � + ��/N�� j=1

N
z�

k
*�j�Dz�k−1�j��


 �1 −
�

�M̄�
+

�

�M̄�
exp�− �M̄�

+ ��M̄�/N�� j=1

N
z�

k
*�j�Dz�k−1�j��	


 f� 1

N
�
j=1

N

z�
k
*�j��3z�k−1�j��

− Nd� 1

N
�
j=1

N

z�
k
*�j��3z�k−1�j�� . �J1�

We introduce the auxiliary fields

�k =
1

N
�
j=1

N

z�
k
*�j��3z�k−1�j� , �J2�

�k =
1

N
�
j=1

N

z�
k
*�j��1z�k−1�j� , �J3�

�k =
1

N
�
j=1

N

z�
k
*�j�Dz�k−1�j� �J4�

and the corresponding �̄k , �̄k , �̄k to enforce the constraints via
Laplace representations of the Dirac delta functions. From
Eq. �90�, we obtain

e−Ĥt = lim
M→�

� �Dz�*Dz�� �

��

k=1

M
i�Nd�̄kd�k

2�

i�Nd�̄kd�k

2�

i�Nd�̄kd�k

2�
��z�M��z�0�


 exp��k=1

M � j=1

N

− �1/2��z�

k
*�j� · z�k�j�

+ z�
k−1
* �j� · z�k−1�j� − 2z�

k
*�j� · z�k−1�j�� + ��z�

k
*�j���̄k�3

+ �̄k�1 + �̄kD�z�k−1�j����exp��N�k=1

M

− �̄k�k − �̄k�k

− �̄k�k + e−��1−�k��1 − �/�M̄� + ��/�M̄��e−�M̄��1−�k��f��k�

− d��k��� . �J5�

We obtain the partition function from the trace of the evolu-
tion operator �J5�

Z = Tr�e−ĤtP̂� = lim
M→�

�
0

2� ��
j=1

N
d� j

2�
e−i�j� � ��

k=1

M

Dz�
k
*Dz�k�


�exp�− S�z�*,z����z�0=ei�z�M
. �J6�

By inserting Eq. �J5�, we obtain

Z = lim
M→�

� �D�̄D�D�̄D�D�̄D��exp��N�k=1

M
�− �̄k�k

− �̄k�k − �̄k�k��exp��N�k=1

M

e−��1−�k��1 − �/�M̄�

+ ��/�M̄��e−�M̄��1−�k��f��k� − d��k���


 �
0

2� ��
j=1

N
d� j

2�
e−i�j� � ��

k=1

M

Dz�
k
*Dz�k��


exp�− � j=1

N �k,l=1

M
z�

k
*�j�Skl�j�z�l�j���z�M=ei�z�0

. �J7�

The matrix S�j� in Eq. �J7� is defined by

S�j� =�
I 0 0 . . . − ei�jA1

− A2 I 0 . . . 0

0 − A3 I . . . 0

] . . . . . . . . . 0

0 . . . 0 − AM I
� . �J8�

Here Ak= I+���̄k�3+ �̄k�1+ �̄kD�.
After calculating the Gaussian integral over the coherent

states fields, we obtain

lim
M→�

�
0

2� ��
j=1

N
d� j

2�
�e−i�j� ��

k=1

M

Dz�
k
*Dz�k�


exp�− � j=1

N �k=1

M
z�

k
*�j�Skl�j�z�l�j��

= lim
M→�

�
0

2�

�
j=1

N
d� j

2�
e−i�j�det S�j��−1 = �

0

2�

�
j=1

N
d� j

2�


e−i�jexp�− Tr ln�I − ei�jT̂ exp���k=1

M
�̄k�3 + �̄k�1

+ �̄kD��� = lim
M→�

�
j=1

N

TrT̂exp���k=1

M
��̄k�3 + �̄k�1

+ �̄kD�� = QN, �J9�

where

Q = TrT̂exp��
0

t

dt���̄�3 + �̄�1 + �̄D�� . �J10�

With this result the partition function in Eq. �J7� becomes
Eq. �91�.

APPENDIX K

We consider recombination in the Eigen model. The ma-
trix elements of the Hamiltonian operator in the coherent
states basis are given, to order O�N�, by

−
�z�k�Ĥ�z�k−1�
�z�k�z�k−1�

= Ne−�exp���/N�� j=1

N
z�

k
*�j��1z�k−1�j��


 �1 − � + �g„
z�
k
*�j�Dj

lz�k−1�j��…�


f� 1

N
�
j=1

N

z�
k
*�j��3z�k−1�j��
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− Nd� 1

N
�
j=1

N

z�
k
*�j��3z�k−1�j�� . �K1�

Here we notice that the function g�
z�
k
*�j�Dj

lz�k−1�j��� is the
same as in Eq. �43�. Therefore, the same analysis presented
through Eqs. �43�–�45� regarding the singular behavior of the
function g applies for the Eigen model as well. Hence, in the
large N limit, we have g� 1

N� j=1
N z�

k
*�j�Dz�k−1�j��, with D= �Dj

l�
being again the matrix defined in Eq. �42�.

We introduce the auxiliary fields

�k =
1

N
�
j=1

N

z�
k
*�j��3z�k−1�j� , �K2�

�k =
1

N
�
j=1

N

z�
k
*�j��1z�k−1�j� , �K3�

�k =
1

N
�
j=1

N

z�
k
*�j�Dz�k−1�j� , �K4�

and the corresponding conjugate fields �̄k, �̄k and �̄k to en-
force the constraints via Laplace representations of the Dirac
delta functions. Thus, we have

e−Ĥt = lim
M→�

� �Dz�*Dz�� �

��

k=1

M
i�Nd�̄kd�k

2�

i�Nd�̄kd�k

2�

i�Nd�̄kd�k

2�
� 
 �z�M�


�z�0�exp�− �1/2��k=1

M � j=1

N
�z�

k
*�j� · z�k�j�

+ z�
k−1
* �j� · z�k−1�j� − 2z�

k
*�j� · z�k−1�j���


 exp���k=1

M � j=1

N
z�

k
*�j���̄k�3 + �̄k�1

+ �̄kD�z�k−1�j��exp�− �N�k=1

M
��̄k�k + �̄k�k + �̄k�k��


 exp��N�k=1

M
�e−��1−�k��1 − � + �g��k�f��k�

− d��k���� . �K5�

The partition function is expressed by

Z = Tr�e−ĤtP̂� = �
0

2� ��
j=1

N
d� j

2�
e−i�j� lim

M→�
� ��

k=1

M

Dz�
k
*Dz�k�


�exp�− S�z�*,z����z�0=ei�z�M
. �K6�

By inserting Eq. �K5�, we obtain

Z = lim
M→�

� �D�D�̄D�̄D�D�̄D��exp�− �N�k=1

M
��̄k�k

+ �̄k�k + �̄k�k��


exp��N�k=1

M

e−��1−�k��1 − � + �g��k��f��k� − d��k���


�
0

2� ��
j=1

N
d� j

2�
�e−i�j� ��

k=1

M

Dz�
k
*Dz�k��exp�

− � j=1

N �k,l=1

M
z�

k
*�j�Skl�j�z�l�j���z�0=ei�z�M

. �K7�

The Gaussian integral can be performed over the coherent
state fields, to obtain the representation in Eq. �102�. Here,
the one-dimensional Ising trace is defined by

Q = TrT̂exp��
0

t

dt���̄�3 + �̄�1 + �̄D�� . �K8�

APPENDIX L

We analyze the effect of introducing different schemes of
horizontal gene transfer in the parallel model. For the paral-
lel model in the presence of horizontal gene transfer with

blocks of size M̄ =1, we obtain

 du

d�
 

�→0
=

u0�0 + �1 − �0
2 − 1

2f��u0�
. �L1�

Here, ��0 ,u0� represents the solution for �=0, i.e., they are
obtained from the system

F��� = f��� + ��1 − �2 − � , �L2�

 �F
��
 

�=�0

= 0 = f���0� −
��0

�1 − �0
2

, �L3�

fm = f�u0� = F��0� = f��0� + ��1 − �0
2 − � . �L4�

From Eq. �L4�, we obtain u0 from the inverse function

u0 = f−1�F��0�� = f−1�f��0� + ��1 − �0
2 − �� . �L5�

Let us Taylor expand Eq. �L5� near x= f��0�,

u0 = f−1�x� + �f−1���x�
x + �f−1���x�
�
x�2

2
�L6�

with 
x=���1−�0
2−1�. Here, we use the inverse function

theorem to obtain the derivatives

�f−1���x� =
1

f��f−1�x��
=

1

f���0�
,

�f−1���x� =
− f��f−1�x��

f��f−1�x���3 = −

f���0�
�f���0��3 . �L7�

Hence, Eq. �L6� becomes

u0 = �0 +

x

f���0�
−

f���0�
�f���0��3

�
x�2

2
. �L8�

From Eq. �L3�, we have
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x

f���0�
=

���1 − �0
2 − 1�

��0

�1 − �0
2

=
1 − �0

2 − �1 − �0
2

�0
. �L9�

From Eq. �L8� into Eq. �L7�, after multiplying by �0, we
have

u0�0 = �0
2 + �0


x

f���0�
− �0

f���0�
�f���0��3

�
x�2

2
= �0

2

+ �0
�1 − �0

2 − �1 − �0
2�

�0
−

�0

f���0�
f���0�

�f���0��2

�
x�2

2
= 1

− �1 − �0
2 − f���0�

�
x�2

2�f���0��2

�1 − �0
2

�
. �L10�

Therefore, we finally obtain

u0�0 + �1 − �0
2 − 1 = −

f���0�
2

�
x�2

�f���0��2

�1 − �0
2

�
. �L11�

The sign of this expression is clearly determined by −f���0�,
and hence after Eq. �L1� we obtain the condition

 du

d�
 

�→0
= ��0 if f���0� � 0,

�0 if f���0� � 0.
� �L12�

From Eq. �L12�, we conclude that horizontal gene transfer
will enhance selection towards the fittest individuals when
negative epistasis is present �f��u��0�, while it will intro-
duce an additional load against selection, with the corre-
sponding deleterious effect on the mean fitness, when posi-
tive epistasis is present �f��u��0�. This result proves that the
mutational deterministic hypothesis holds for horizontal gene

transfer of blocks of size M̄ =1 in the parallel model.

For the case of horizontal gene transfer of blocks M̄ �1,
we obtain the equation

 du

d�
 

�→0
=

�1 +
u0�0 − 1 + �1 − �0

2

2
�M̄

− 1

M̄ f��u0�
. �L13�

We notice by expanding the binomial up to first order, that
the leading term in Eq. �L13� is

 du

d�
 

�→0
�

u0�0 − 1 + �1 − �0
2

2f��u0�
, �L14�

which is identical to Eq. �L1�, and hence the analysis pre-

sented for the case M̄ =1 also applies for M̄ �1, in particular
Eq. �L12�.

For the process of horizontal gene transfer with multiple-

size blocks, with average �M̄�, we obtain the equation

 du

d�
 

�→0
=

exp���M̄�/2��u0�0 − 1 + �1 − �0
2�� − 1

�M̄�f��u0�
.

�L15�

By expanding the exponential at first order, we obtain that
the leading term in this case is also Eq. �L14�, which is

identical to Eq. �L1�. Therefore, the analysis presented for

M̄ =1, and in particular Eq. �L12� applies in this case as well.
In conclusion, we proved that the mutational deterministic
hypothesis, expressed in quantitative form by Eq. �L12�,
holds for the different forms of horizontal gene transfer dis-
cussed in our work for the parallel model.

APPENDIX M

We analyze the effect of introducing different schemes of
horizontal gene transfer in the Eigen model. For the Eigen
model in the presence of horizontal gene transfer, and for
zero degradation rate d�u�=0, we obtain the equation

 du

d�
 

�→0
=

u0�0 + �1 − �0
2 − 1

2f��u�
e−��1−�1−�0

2�f��0� . �M1�

The sign of this derivative is determined by the combination
u0�0+�1−�0

2−1, where ��0 ,u0� represents the solution for
�=0, i.e., they are obtained from the system

F��� = f���e−��1−�1−�2�, �M2�

 �F
��
 

�=�0

= 0 = � f���0� −
��0

�1 − �0
2	e−��1−�1−�0

2�, �M3�

fm = f�u0� = F��0� = e−��1−�1−�0
2�f��0� . �M4�

By inverting Eq. �M4�, we obtain u0

u0 = f−1�F��0�� = f−1�f��0�e−��1−�1−�0
2�� . �M5�

We expand Eq. �M5� near x= f��0�, by applying identities
Eqs. �L6�–�L9�

u0 = �0 +

x

f���0�
−

f���0�
�f���0��3

�
x�2

2
�M6�

with 
x= �e−��1−�1−�0
2�−1� f��0��−��1−�1−�0

2�f��0�. From
Eq. �M3�, we have


x

f���0�
=

���1 − �0
2 − 1�f��0�

��0

�1 − �0
2

f��0�
=

1 − �0
2 − �1 − �0

2

�0
. �M7�

From Eq. �M7� into Eq. �M6�, after multiplying by �0 we find

u0�0 = �0
2 + �0

1 − �0
2 − �1 − �0

2

�0
− �0

�
x�2

2

f���0�
�f���0��3 = 1

− �1 − �0
2 − f���0�

�0�
x�2

�f���0��3 . �M8�

Hence, we obtain

u0�0 + �1 − �0
2 − 1 = − f���0�

�0�
x�2

�f���0��3 . �M9�

Clearly, the sign of this expression is determined by the sign
of −f���0�, and hence after Eq. �M1� we obtain the condition
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 du

d�
 

�→0
= ��0 if f���0� � 0,

�0 if f���0� � 0,
� �M10�

which proves that the mutational deterministic hypothesis

holds for horizontal gene transfer of blocks of size M̄ =1 in
the Eigen model.

For the case of horizontal gene transfer of blocks of size

M̄ �1, we obtain the equation

 du

d�
 

�→0
=

�1 +
u0�0 − 1 + �1 − �0

2

2
�M̄

− 1

M̄ f��u0�
e−��1−�1−�0

2�f��0� .

�M11�

By expanding the binomial in the numerator of Eq. �M11� up
to first order, we notice that the leading term is given by

 du

d�
 

�→0
�

u0�0 − 1 + �1 − �0
2

2f��u0�
e−��1−�1−�0

2�f��0�

�M12�

which is identical to Eq. �M1�. Therefore, the analysis pre-

sented for the case M̄ =1, and in particular Eq. �M10� applies

for M̄ �1 as well.
When considering the process of horizontal gene transfer

of blocks of multiple size with average �M̄�, we obtain the
equation

 du

d�
 

�→0
=

e��M̄�/2��u0�0−1+�1−�0
2� − 1

�M̄�f��u0�
f��0�e−��1−�1−�0

2�.

�M13�

By expanding the exponential in Eq. �M13� up to first order,
we notice that the leading term is given by Eq. �M12� in this
case as well, which is identical to Eq. �M1�. Therefore, the

analysis presented for the process with M̄ =1, and in particu-
lar Eq. �M10�, applies for the process of horizontal gene
transfer of multiple size blocks as well. Summarizing, we
proved that the mutational deterministic hypothesis, ex-
pressed quantitatively in Eq. �M10�, holds for the different
forms of horizontal gene transfer studied in this work for the
Eigen model.

APPENDIX N

For the case of two-parent recombination in the parallel
model, we find that the phase structure is defined by two
fitness functions. A low �-dependent phase S1, defined as the
maximum in � of

F�
�1���� = f��� + ���1 − �2 − 1� − � . �N1�

The maximum of this expression, attained at �0, is obtained
from the equation

�

��
F�

�1���0� = f���0� −
��0

�1 − �0
2

. �N2�

We notice that the value �0 is the same as in the absence of
recombination, when �=0. Therefore, from the self-
consistency condition, we obtain for this phase

fm
�1� = F�

�1���0� = F0��0� − � = f�u�� . �N3�

Here, we have denoted u� as the value of the average com-
position in phase S1, when the recombination rate is �. Cor-
respondingly, we also have from Eq. �N3� the exact relation

f�u�� = f�u0� − � �N4�

with f�u0�=F0��0� and u0 the average composition in the
absence of recombination, when �=0.

Let us define as u* the value of the average composition
at the S2 phase, which is independent of the recombination
rate. The value u* is obtained as the solution of the nonlinear
equation

f��u*� =
2�u*

1 − u*
2

. �N5�

We consider in Eq. �N4� the value �=�* at which the
average fitness of the S1 and S2 phases are identical, as the
condition u�

*
=u*,

�* = f�u0� − f�u*� . �N6�

In Eq. �N6�, let us consider the Taylor expansion of f�u*�
near u0, up to first order in �=u*−u0,

�* = − �f��u*� + O��2� . �N7�

We expand Eq. �N5� near u0 at first order in �=u*−u0,

f��u0� + �f��u0� =
2��u0 + ��

1 − �u0 + ��2 �
2��u0 + ��

1 − u0
2 �1

−
2u0

1 − u0
2��−1

=
2�u0

1 − u0
2 + 2�

1 + u0
2

�1 − u0
2�2�

+ O��2� . �N8�

We solve explicitly for � in Eq. �N8�, and combine with
Eq. �N7�, to obtain an expression for �*

�* =

f��u0�� f��u0� −
2�u0

1 − u0
2�

f��u0� − 2�
1 + u0

2

�1 − u0
2�2

. �N9�

Let us now analyze the sign of �* as a function of the sign of
the curvature of the fitness function, as defined by f�. We
consider the Laurent series of f�u� for small u. That is,

f�u� = ku�,

f��u� = k�u�−1,
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f��u� = k��� − 1�u�−2, �N10�

where ��0 to satisfy the monotonically increasing condi-
tion. This family of polynomials provides a representation of
arbitrary, monotonically increasing functions for small u0.

The case �=0, corresponding to a constant identical fit-
ness for all sequence types in the population, possesses the
trivial solution after Eq. �N2� �0=0, which implies u0=0, and
after Eq. �N5� u*=0. Thus a single nonselective phase is
observed for this case, both in the presence and in the ab-
sence of recombination.

From Eq. �N10�, we have f��0 for ��1, f��0 for �
�1 and f�=0 at �=1. We analyze these possible cases sepa-
rately. From Eq. �N10� into Eq. �N9�, we have

�* =

k�u0
��k�u0

� −
2�u0

2

1 − u0
2	

k��� − 1�u0
� − 2�u0

2 1 + u0
2

�1 − u0
2�2

. �N11�

Case 1: ��1, f��0. The denominator in Eq. �N11� is
clearly negative, since �−1�0 in this case. The numerator,
for u0�1

k�u0
� −

2�u0
2

1 − u0
2 � k�u0

� − 2�u0
2 � 0. �N12�

Therefore, in this case �*= ��0�
��0� �0, and hence u*−u0�0.

Case 2: 1���2, f��0. The denominator in Eq. �N11�,
for u0�1 and �−1�0,

k��� − 1�u0
� − 2�u0

2 1 + u0
2

�1 − u0
2�2 � k��� − 1�u0

� − 2�u0
2 � 0.

�N13�

The numerator is also positive, by the same argument as in
Eq. �N12�. Therefore, in this case �*= ��0�

��0� �0, and hence
u*�u0.

Case 3: ��2, f��0. The denominator in Eq. �N11�, for
u0�1 and �−1�0,

k��� − 1�u0
� − 2�u0

2 1 + u0
2

�1 − u0
2�2 � k��� − 1�u0

� − 2�u0
2 � 0.

�N14�

The numerator is

k�u0
� −

2�u0
2

1 − u0
2 � k�u0

� − 2�u0
2 � 0. �N15�

Therefore, in this case �*= ��0�
��0� �0, and hence u*−u0�0.

For �=1, we obtain an exact solution from Eq. �N2�, u0

=�1+�2 /k2−� /k. This result in Eq. �N11� yields �*=0, and
thus u*=u0 for this particular case.

For �=2, we have the analytical solution presented in
Eqs. �71�,

u* − u0 =�1 − 2
�

k
− �1 −

�

k
	

=��1 −
�

k
	2

−
�2

k2 − �1 −
�

k
	 � 0 �N16�

with �*= �2

2k �0. Summarizing, we proved that

u* − u0 = ��0, f� � 0,

�0, f� � 0.
� �N17�

This result proves the mutational deterministic hypothesis for
two-parent recombination in the parallel model.

APPENDIX O

For the case of two-parent recombination in the Eigen
model, we find that the phase structure is defined by two
fitness functions. A low �-dependent phase S1, defined as the
maximum in � of

F�
�1���� = �1 − ��e−��1−�1−�2�. �O1�

The maximum of this expression, attained at �0, is obtained
from the equation

�

��
F�

�1���0� = 0,

f���0� =
��0

�1 − �0
2

f��0� ,

�ln f��0��� =
��0

�1 − �0
2

. �O2�

We notice that the value �0 is the same as in the absence of
recombination, when �=0. Therefore, from the self-
consistency condition, we obtain for this phase

fm
�1� = F�

�1���0� = �1 − ��F0��0� = f�u�� . �O3�

Here, we have denoted u� as the value of the average com-
position in phase S1, when the recombination rate is �. Cor-
respondingly, we also have from Eq. �O3� the exact relation

f�u�� = �1 − ��f�u0� �O4�

with f�u0�=F0��0� and u0 the average composition in the
absence of recombination, when �=0.

Let us define as u* the value of the average composition
at the S2 phase, which is independent of the recombination
rate. The value u* is obtained as the solution of the nonlinear
equation

f��u*� =
2�u*

1 − u*
2

f�u*� ,

�ln f�u*��� =
2�u*

1 − u*
2

. �O5�
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We consider in Eq. �O3� the value �=�* at which the
average fitness of the two phases are equal, as the condition
u�

*
=u*,

1 − �* =
f�u*�

f�u0�
. �O6�

We take the logarithm of this expression, and Taylor expand
up to first order in �=u*−u0,

ln�1 − �*� = ln�f�u0 + ��� − ln�f�u0�� − �* = ��ln f�u0���.

�O7�

We expand Eq. �O5� near u0 at first order in �=u*−u0,

�ln f�u0��� + ��ln f�u0��� =
2��u0 + ��

1 − �u0 + ��2 =
2��u0 + ��

1 − u0
2


�1 −
2u0

1 − u0
2��−1

+ O��2�

=
2�u0

1 − u0
2 + 2�

1 + u0
2

�1 − u0
2�2� + O��2� .

�O8�

We solve explicitly for � in Eq. �O8�, and combine with Eq.
�O7�, to obtain an expression for �*

�* = �ln f�u0���
�ln f�u0��� −

2�u0

1 − u0
2

�ln f�u0��� −
2��1 + u0

2�
�1 − u0

2�2

. �O9�

The analysis follows the same lines as in the parallel
model case. That is, we analyze the sign of �* after Eq. �O9�.
We consider a family of polynomials f�u�=ku�+k0, which
for u0�1

ln f�u� = ln�1 +
k

k0
u�	 + ln�k0� �

k

k0
u� + ln�k0� ,

�ln f�u��� = �
k

k0
u�−1,

�ln f�u��� = ��� − 1�
k

k0
u�−2 �O10�

with ��0 to satisfy the monotonically increasing condition.
This family of polynomials provides a representation of
smooth and monotonically increasing functions for small u0.

The case �=0 corresponds to a constant identical fitness
for all sequence types in the population, and possesses the
trivial solution after Eq. �O2� �0=0, which implies u0=0, and
after Eq. �O5� u*=0. Therefore, a single nonselective phase
is observed for this case, both in the presence and in the
absence of recombination.

From Eq. �O10�, we have f��0 for ��1, f��0 for �
�1 and f�=0 at �=1. We analyze these possible cases sepa-
rately. From Eq. �O10� into Eq. �O9�, we have

�* =

k

k0
�u0

�� k

k0
�u0

� −
2�u0

2

1 − u0
2	

k

k0
��� − 1�u0

� − 2�u0
2 1 + u0

2

�1 − u0
2�2

. �O11�

Case 1: ��1, f��0. The denominator in Eq. �O11� is
clearly negative, since �−1�0 in this case. The numerator,
for u0�1

k

k0
�u0

� −
2�u0

2

1 − u0
2 �

k

k0
�u0

� − 2�u0
2 � 0. �O12�

Therefore, in this case �*= ��0�
��0� �0, and hence u*−u0�0.

Case 2: 1���2, f��0. The denominator in Eq. �O11�,
for u0�1 and �−1�0,

k

k0
��� − 1�u0

� − 2�u0
2 1 + u0

2

�1 − u0
2�2 �

k

k0
��� − 1�u0

� − 2�u0
2 � 0.

�O13�

The numerator is also positive, by the same argument as in
Eq. �O12�. Therefore, in this case �*= ��0�

��0� , and hence u*
�u0.

Case 3: ��2, f��0. The denominator in Eq. �O11�, for
u0�1 and �−1�0,

k

k0
��� − 1�u0

� − 2�u0
2 1 + u0

2

�1 − u0
2�2 �

k

k0
��� − 1�u0

� − 2�u0
2 � 0.

�O14�

The numerator is

k

k0
�u0

� −
2�u0

2

1 − u0
2 �

k

k0
�u0

� − 2�u0
2 � 0. �O15�

Therefore, in this case �*= ��0�
��0� �0, and hence u*−u0�0.

For �=1, we find that for u*�1 and u0�1, u*= k
2�k0

+O� k
2�k0

�2, �0= k
�k0

+O� k
2�k0

�2, and u0= k
2�k0

+O� k
2�k0

�2. There-
fore, u*−u0=0 and �*=0 in this case.

For �=2, we have the exact solution expressed in Eqs.
�113� and �114�. The region of parameters space where
phases S1 and S2 intersect is 2��k0 /k��1. We analyze these
formulas considering that u*�1 and u0�1. It is convenient
to define, in this case the small parameter �=2��k0 /k��1.
From Eq. �O5�, we have

u* =
1

1 + �
− O��� . �O16�
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Expanding Eq. �113� up to first order in �, we obtain the
result

u0 =�2
�1 + �2 − 1

�2 − O��� . �O17�

Therefore, for ��1, from Eqs. �O17� and �O16�, when �
=2, u*�u0, and hence �*�0.

Summarizing, we have shown that

u* − u0 = ��0, f� � 0,

�0, f� � 0.
� �O18�

This result proves the mutational deterministic hypothesis for
two-parent recombination in the Eigen model.
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